Ze-xun Tang, Hong-qi Ye, Xin Ma, and Kai Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2296-0
Cite this article as:
Ze-xun Tang, Hong-qi Ye, Xin Ma, and Kai Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2296-0
Research Article

Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material

+ Author Affiliations
  • Received: 11 January 2021Revised: 21 April 2021Accepted: 22 April 2021Available online: 23 April 2021
  • Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles. As for the typical LiNi0.8Co0.1Mn0.1O2 material, the particle formation is significant for electrochemical properties of the cathode. In this work, the structure, morphology and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 secondary particles and single crystals are systematically studied. A lower Ni2+/Ni3+ ratio of 0.66 and a lower residual alkali content of 2280 ppm were achieved on the surface of single crystals. In addition, the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C (~12 mAh/g lower than that of the secondary particles) and enhanced electrochemical stability, especially when cycled at 50 °C and in a wider electrochemical window (between 3.0 and 4.4 V vs. Li+/Li). The LiNi0.8Co0.1Mn0.1O2 secondary particles were suitable for applications requiring high specific capacity, whereas single crystals exhibited better stability, indicating that they are more suitable for use in long life requested devices.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (133) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return