kang Yan, Chongwei Liu, Liping Liu, Min Xiong, Zhongtang Zhang, Shuiping Zhong, Zhifeng Xu, and Jindi Huang , Pyrolysis behaviour and combustion kinetics of waste printed circuit boards, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2299-x
Cite this article as:
kang Yan, Chongwei Liu, Liping Liu, Min Xiong, Zhongtang Zhang, Shuiping Zhong, Zhifeng Xu, and Jindi Huang , Pyrolysis behaviour and combustion kinetics of waste printed circuit boards, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2299-x
Research Article

Pyrolysis behaviour and combustion kinetics of waste printed circuit boards

+ Author Affiliations
  • Received: 1 March 2021Revised: 28 April 2021Accepted: 29 April 2021Available online: 30 April 2021
  • The effective recycling of waste printed circuit boards (WPCBs) can conserve resources and reduce environmental pollution. This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres through thermogravimetric and Gaussian fitting analyses. Furthermore, this study analyses the pyrolysis products and combustion processes of WPCBs through thermogravimetric–Fourier transform infrared and thermogravimetric–mass spectrometry analytical techniques. Results show that the pyrolysis and combustion processes of WPCBs do not constitute a single reaction, but rather, they constitute an overlap of multiple reactions. The pyrolysis and combustion process of WPCBs is divided into multiple reactions by Gaussian peak fitting, and the kinetic parameters of each reaction are obtained by the Coats-Redfern method. In an argon atmosphere, pyrolysis consists of the overlap of the preliminary pyrolysis of epoxy resin, pyrolysis of small organic molecules, and pyrolysis of brominated flame retardants. The reaction mechanism functions are G(α)= (1-α)-1-1, G(α) = (1-α)-1-1 and G(α)= [-(1-α)]4 (α is the conversion rate of the reaction,  G(α) is the mechanism function of the reaction). The combustion of WPCB in oxygen consists of the overlap of the epoxy resin and brominated flame retardant combustion reactions; the reaction mechanism functions are G(α)= ((1-α)-1/3-1)2 and G(α)= ((1-α)-1/3-1)2. This study provided the theoretical basis for pollution control, process optimization and reactor design of WPCBs pyrolysis.


  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (121) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return