Bowei Zhang, Qiao Zhang, Zhan Zhang, Kui Xiao, Qiong Yao, Guojia Ma, Gang Sun,  and Junsheng Wu, Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 153-160. https://doi.org/10.1007/s12613-021-2307-1
Cite this article as:
Bowei Zhang, Qiao Zhang, Zhan Zhang, Kui Xiao, Qiong Yao, Guojia Ma, Gang Sun,  and Junsheng Wu, Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 153-160. https://doi.org/10.1007/s12613-021-2307-1
Research Article

Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties

+ Author Affiliations
  • Corresponding author:

    Junsheng Wu    E-mail: wujs76@163.com

  • Received: 20 January 2021Revised: 27 April 2021Accepted: 17 May 2021Available online: 18 May 2021
  • Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath, followed by the evaluation of their mechanical and anti-corrosion properties. The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate. X-ray diffraction (XRD) patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along (200) facet. In addition, it is found that the incorporated SiC particles with medium micron sizes (8 and 1.5 μm) could significantly enhance the micro-hardness of the Ni composite coatings. Nevertheless, electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced. In contrast, the combined incorporation of nanosized (50 nm) SiC particles with medium micron (1.5 μm) ones is capable of promoting the compactness of the composite coatings, which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss.

  • loading
  • [1]
    V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, and A.S. Rouhaghdam, Electrodeposition of Ni–Fe alloys, composites, and nano coatings—A review, J. Alloys Compd., 691(2017), p. 841. doi: 10.1016/j.jallcom.2016.08.329
    [2]
    Y.H. Ahmad and A.M.A. Mohamed, Electrodeposition of nanostructured nickel-ceramic composite coatings: A review, Int. J. Electrochem. Sci., 9(2014), p. 1942.
    [3]
    M. Sabzi, S.M. Dezfuli, and Z. Balak, Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni–P nanocomposite coating enhanced by zirconia nanoparticles, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1020. doi: 10.1007/s12613-019-1805-x
    [4]
    W. Jiang, L.D. Shen, M.B. Qiu, X. Wang, M.Z. Fan, and Z.J. Tian, Preparation of Ni–SiC composite coatings by magnetic field-enhanced jet electrodeposition, J. Alloys Compd., 762(2018), p. 115. doi: 10.1016/j.jallcom.2018.05.097
    [5]
    Y. Zhou, F.Q. Xie, X.Q. Wu, W.D. Zhao, and X. Chen, A novel plating apparatus for electrodeposition of Ni–SiC composite coatings using circulating-solution co-deposition technique, J. Alloys Compd., 699(2017), p. 366. doi: 10.1016/j.jallcom.2016.12.331
    [6]
    W. Jiang, L.D. Shen, M.B. Qiu, M.Y. Xu, and Z.J. Tian, Microhardness, wear, and corrosion resistance of Ni–SiC composite coating with magnetic-field-assisted jet electrodeposition, Mater. Res. Express, 5(2018), No. 9, art. No. 096407. doi: 10.1088/2053-1591/aad72c
    [7]
    Y. Yang and Y.H. Liu, Effects of current density on the microstructure and the corrosion resistance of alumina coatings embedded with SiC nano-particles produced by micro-arc oxidation, J. Mater. Sci. Technol., 26(2010), No. 11, p. 1016. doi: 10.1016/S1005-0302(10)60167-3
    [8]
    H. Gül, F. Kılıç, M. Uysal, S. Aslan, A. Alp, and H. Akbulut, Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition, Appl. Surf. Sci., 258(2012), No. 10, p. 4260. doi: 10.1016/j.apsusc.2011.12.069
    [9]
    F. Mayanglambam and M. Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1147. doi: 10.1007/s12613-020-2071-7
    [10]
    M. Lekka, A. Lanzutti, C. Zanella, G. Zendron, L. Fedrizzi, and P.L. Bonora, Resistance to localized corrosion of pure Ni, micro- and nano-SiC composite electrodeposits, Pure Appl. Chem., 83(2010), No. 2, p. 295. doi: 10.1351/PAC-CON-10-08-21
    [11]
    I. Garcia, A. Conde, G. Langelaan, J. Fransaer, and J.P. Celis, Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel, Corros. Sci., 45(2003), No. 6, p. 1173. doi: 10.1016/S0010-938X(02)00220-2
    [12]
    C. Zanella, M. Lekka, and P.L. Bonora, Influence of the particle size on the mechanical and electrochemical behaviour of micro- and nano-nickel matrix composite coatings, J. Appl. Electrochem., 39(2009), No. 1, p. 31. doi: 10.1007/s10800-008-9635-y
    [13]
    V. Medeliene, The influence of B4C and SiC additions on the morphological, physical, chemical and corrosion properties of Ni coatings, Surf. Coat. Technol., 154(2002), No. 1, p. 104. doi: 10.1016/S0257-8972(01)01703-0
    [14]
    R.S. Bajwa, Z. Khan, V. Bakolas, and W. Braun, Water-lubricated Ni-based composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) thin film coatings for industrial applications, Acta Metall. Sinica Engl. Lett., 29(2016), No. 1, p. 8. doi: 10.1007/s40195-015-0354-1
    [15]
    H.B. Temam, A. Chala, and S. Rahmane, Microhardness and corrosion behavior of Ni–SiC electrodeposited coatings in presence of organic additives, Surf. Coat. Technol., 205(2011), p. S161. doi: 10.1016/j.surfcoat.2011.04.086
    [16]
    C.F. Sun, X.Q. Liu, C.Y. Zhou, C.N. Wang, and H.W. Cao, Preparation and wear properties of magnetic assisted pulse electrodeposited Ni–SiC nanocoatings, Ceram. Int., 45(2019), No. 1, p. 1348. doi: 10.1016/j.ceramint.2018.07.242
    [17]
    P. Tirlapur, M. Muniprakash, and M. Srivastava, Corrosion and wear response of oxide-reinforced nickel composite coatings, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2563. doi: 10.1007/s11665-016-2117-1
    [18]
    A. Amadeh, A. Rahimi, B. Farshchian, and H. Moradi, Corrosion behavior of pulse electrodeposited nanostructure Ni–SiC composite coatings, J. Nanosci. Nanotechnol., 10(2010), No. 8, p. 5383. doi: 10.1166/jnn.2010.1931
    [19]
    M.H. Nazir, Z.A. Khan, A. Saeed, V. Bakolas, W. Braun, R. Bajwa, and S. Rafique, Analyzing and modelling the corrosion behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/graphene nanocomposite coatings, Materials, 10(2017), No. 11, art. No. 1225. doi: 10.3390/ma10111225
    [20]
    S. Dehgahi, R. Amini, and M. Alizadeh, Corrosion, passivation and wear behaviors of electrodeposited Ni–Al2O3–SiC nano-composite coatings, Surf. Coat. Technol., 304(2016), p. 502. doi: 10.1016/j.surfcoat.2016.07.007
    [21]
    P. Jin, C.F. Sun, C.Y. Zhou, L. Shi, and C. Liu, Effect of SiC particle size on structures and properties of Ni–SiC nanocomposites deposited by magnetic pulse electrodeposition technology, Ceram. Int., 45(2019), No. 16, p. 20155. doi: 10.1016/j.ceramint.2019.06.283
    [22]
    G. Gyawali, B. Joshi, K. Tripathi, and S.W. Lee, Effect of ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni–SiC composite coatings, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4462. doi: 10.1007/s11665-017-2891-4
    [23]
    I. Corni, R.J. Chater, A.R. Boccaccini, and M.P. Ryan, Electro co-deposition of Ni–Al2O3 composite coatings, J. Mater. Sci., 47(2012), No. 14, p. 5361. doi: 10.1007/s10853-012-6381-7
    [24]
    D.M. Jarząbek, C. Dziekoński, W. Dera, J. Chrzanowska, and T. Wojciechowski, Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites, Ceram. Int., 44(2018), No. 17, p. 21750. doi: 10.1016/j.ceramint.2018.08.271
    [25]
    M.R. Vaezi, S.K. Sadrnezhaad, and L. Nikzad, Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids Surf. A: Physicochem. Eng. Aspects, 315(2008), No. 1-3, p. 176. doi: 10.1016/j.colsurfa.2007.07.027
    [26]
    W.W. Zhang and B.S. Li, Electrochemical properties and XPS analysis of Ni–B/SiC nanocomposite coatings, Int. J. Electrochem. Sci., (2018), p. 3516. doi: 10.20964/2018.04.30
    [27]
    S.T. Aruna, V.E. Selvi, V.K. William Grips, and K.S. Rajam, Corrosion- and wear-resistant properties of Ni–Al2O3 composite coatings containing various forms of alumina, J. Appl. Electrochem., 41(2011), No. 4, p. 461. doi: 10.1007/s10800-011-0256-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1098) PDF Downloads(76) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return