Yanping Li, Xue Bian, Xun Jin, Peng Cen, Wenyuan Wu, and Gaofeng Fu, Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1809-1816. https://doi.org/10.1007/s12613-021-2309-z
Cite this article as:
Yanping Li, Xue Bian, Xun Jin, Peng Cen, Wenyuan Wu, and Gaofeng Fu, Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1809-1816. https://doi.org/10.1007/s12613-021-2309-z
Research Article

Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method

+ Author Affiliations
  • Corresponding author:

    Xue Bian    E-mail: bianx@smm.neu.edu.cn

  • Received: 29 March 2021Revised: 24 May 2021Accepted: 27 May 2021Available online: 1 June 2021
  • Since ultraviolet (UV) light, as well as blue light, which is part of visible light, is harmful to skin, samarium–cerium compounds containing Sm2O2S were synthesized by co-precipitation method. This kind of compounds blocks not only UV light, but also blue light. The minimum values of average transmittance (360–450 nm) and band gap of samarium–cerium compounds were 8.90% and 2.76 eV, respectively, which were less than 13.96% and 3.01 eV of CeO2. Elemental analysis (EA), X-ray diffraction (XRD), Fourier transformation infrared (FTIR), and Raman spectra determined that the samples contained Ce4O7, Sm2O2S, Sm2O3, and Sm2O2SO4. The microstructure of samples was analyzed by scanning and transmission electron microscopies (SEM and TEM). X-ray photoelectron spectrum (XPS) showed that cerium had Ce3+ and Ce4+ valence states, and oxygen was divided into lattice oxygen and oxygen vacancy, which was the direct cause of the decrease of average transmittance and band gap.
  • loading
  • [1]
    M. Montazer, E. Pakdel, and M.B. Moghadam, Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect, Fibers Polym., 11(2010), No. 7, p. 967. doi: 10.1007/s12221-010-0967-y
    [2]
    K. Lim, W.S. Chow, and S.Y. Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 787. doi: 10.1007/s12613-019-1781-1
    [3]
    S. Gangopadhyay, D.D. Frolov, A.E. Masunov, and S. Seal, Structure and properties of cerium oxides in bulk and nanoparticulate forms, J. Alloys Compd., 584(2014), p. 199. doi: 10.1016/j.jallcom.2013.09.013
    [4]
    S.S. Zhang, J. Li, X.P. Guo, L.H. Liu, H. Wei, and Y.W. Zhang, Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy, Appl. Surf. Sci., 382(2016), p. 316. doi: 10.1016/j.apsusc.2016.04.151
    [5]
    C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, and L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology, 16(2005), No. 9, p. 1454. doi: 10.1088/0957-4484/16/9/006
    [6]
    T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, and W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46(2010), No. 16, p. 2737.
    [7]
    A.B. Shcherbakov, N.M. Zholobak, V.K. Ivanov, O.S. Ivanova, A.V. Marchevsky, A.E. Baranchikov, N.Y. Spivak, and Y.D. Tretyakov, Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria, Russ. J. Inorg. Chem., 57(2012), No. 11, p. 1411. doi: 10.1134/s0036023612110137
    [8]
    X.C. Dai, Z.M. Tang, Y.H. Ju, N. Ni, H.Q. Gao, J.J. Wang, L.Q. Yin, A.L. Liu, S.J. Weng, J.H. Zhang, J. Zhang, and P. Gu, Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia, Biochem. Biophys. Res. Commun., 549(2021), p. 14. doi: 10.1016/j.bbrc.2021.02.089
    [9]
    I. Dumitrescu, O.G. Iordache, C.E. Mitran, E. Perdum, I.M. Săndulache, L.O. Secăreanu, L.C. Dincă, A. Sobetkii, and L. Diamandescu, Attempts to improve the self-cleaning effect of the textile materials, Ind. Textilă, 71(2020), No. 3, p. 252. doi: 10.35530/it.071.03.1626
    [10]
    L.N. Chi, Y.J. Qian, J.Q. Guo, X.Z. Wang, H. Arandiyan, and Z. Jiang, Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning, Catal. Today, 335(2019), p. 527. doi: 10.1016/j.cattod.2019.02.027
    [11]
    K.S. Su, Y.Y. Tao, and J. Zhang, Highly transparent plasticized PVC composite film with ideal ultraviolet/high-energy short-wavelength blue light shielding, J. Mater. Sci., 56(2021), No. 30, p. 17353. doi: 10.1007/s10853-021-06408-w
    [12]
    M.R. Hamblin, Fullerenes as photosensitizers in photodynamic therapy: Pros and cons, Photochem. Photobiol. Sci., 17(2018), No. 11, p. 1515. doi: 10.1039/C8PP00195Bhttp://dx.doi.org/10.1016/j.bbrc.2021.02.089
    [13]
    A.M. Pires, O.A. Serra, and M.R. Davolos, Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: Efficient materials for up-converting phosphor technology field, J. Alloys Compd., 374(2004), No. 1-2, p. 181. doi: 10.1016/j.jallcom.2003.11.088http://dx.doi.org/10.1016/j.jallcom.2003.11.088
    [14]
    P.D. Han, X.G. Huang, and Q.T. Zhang, Laser stealth absorbent of samarium oxysulfide prepared by flux method, Rare Met., 30(2011), No. 6, p. 616. doi: 10.1007/s12598-011-0438-7
    [15]
    Y.P. Li, X. Bian, Y. Liu, W.Y. Wu, and G.F. Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 292. doi: 10.1007/s12613-020-2126-9http://dx.doi.org/10.1007/s12598-011-0438-7
    [16]
    E. Matijević and W.P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci., 118(1987), No. 2, p. 506. doi: 10.1016/0021-9797(87)90486-3
    [17]
    A. Verma, N. Karar, A.K. Bakhshi, H. Chander, S.M. Shivaprasad, and S.A. Agnihotry, Structural, morphological and photoluminescence characteristics of sol–gel derived nano phase CeO2 films deposited using citric acid, J. Nanopart. Res., 9(2007), No. 2, p. 317. doi: 10.1007/s11051-006-9085-6
    [18]
    L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, and A. Gedanken, Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect, J. Colloid Interface Sci., 246(2002), No. 1, p. 78. doi: 10.1006/jcis.2001.8047
    [19]
    D.S. Zhang, H.X. Fu, L.Y. Shi, C.S. Pan, Q. Li, Y.L. Chu, and W.J. Yu, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem., 46(2007), No. 7, p. 2446. doi: 10.1021/ic061697d
    [20]
    Y.C. Zhou, R.J. Phillips, and J.A. Switzer, Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc., 78(1995), No. 4, p. 981. doi: 10.1111/j.1151-2916.1995.tb08425.x
    [21]
    J. Wang, W. Zeng, and Z.C. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties, Ceram. Int., 42(2016), No. 3, p. 4567. doi: 10.1016/j.ceramint.2015.11.150
    [22]
    Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int., 39(2013), No. 6, p. 6607. doi: 10.1016/j.ceramint.2013.01.096
    [23]
    Y. Chen, S.H. Lv, C.L. Chen, C.J. Qiu, X.F. Fan, and Z.C. Wang, Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes, J. Phys. Chem. C, 118(2014), No. 8, p. 4437. doi: 10.1021/jp410625n
    [24]
    M.L. Zhang, Y. Chen, C.J. Qiu, X.F. Fan, C.L. Chen, and Z.C. Wang, Synthesis and atomic-scale characterization of CeO2 nano-octahedrons, Physica E, 64(2014), p. 218. doi: 10.1016/j.physe.2014.08.002
    [25]
    Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons, Mater. Lett., 96(2013), p. 210. doi: 10.1016/j.matlet.2013.01.069
    [26]
    Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, and Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett., 122(2014), p. 90. doi: 10.1016/j.matlet.2014.01.178
    [27]
    P.F. Hu, Y. Chen, R. Sun, Y. Chen, Y.R. Yin, and Z.C. Wang, Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes, Appl. Surf. Sci., 401(2017), p. 100. doi: 10.1016/j.apsusc.2017.01.005
    [28]
    C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, and L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys., 71(2001), No. 2, p. 179. doi: 10.1016/S0254-0584(01)00279-6
    [29]
    Y.H. Tseng, B.S. Chiou, C.C. Peng, and L. Ozawa, Spectral properties of Eu3+-activated yttrium oxysulfide red phosphor, Thin Solid Films, 330(1998), No. 2, p. 173. doi: 10.1016/S0040-6090(98)00549-5
    [30]
    Y.J. Ding, L.X. Wang, Q.T. Zhang, and S.B. Pan, Enhanced luminescence of La3+-doped gadolinium oxysulfide with tunable crystalline size, J. Electron. Mater., 46(2017), No. 10, p. 5986. doi: 10.1007/s11664-017-5570-1
    [31]
    B.F. Lei, Y.L. Liu, G.B. Tang, Z.R. Ye, and C.S. Shi, Unusual afterglow properties of Tm3+ doped yttrium oxysulfide, Chem. Res. Chin. Univ., 24(2003), No. 5, p. 782.
    [32]
    A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5, Chem. Mater., 15(2003), No. 23, p. 4442. doi: 10.1021/cm034540h
    [33]
    A.N. Georgobiani, A.A. Bogatyreva, V.M. Ishchenko, O.Y. Manashirov, V.B. Gutan, and S.V. Semendyaev, A new multifunctional phosphor based on yttrium oxysulfide, Inorg. Mater., 43(2007), No. 10, p. 1073. doi: 10.1134/s0020168507100093
    [34]
    S. Altmannshofer and D. Johrendt, Synthesis, crystal structure and magnetism of the new oxysulfide Ce3NbO4S3, Z. Anorg. Allg. Chem., 634(2008), No. 8, p. 1361. doi: 10.1002/zaac.200800078
    [35]
    F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 128(2006), No. 36, p. 11758. doi: 10.1021/ja0638410
    [36]
    R.V. Rodrigues, L.C. Machado, J.R. Matos, E.J.B. Muri, A.A.L. Marins, H.F. Brito, and C.A.C. Passos, Oxysulfate/oxysulfide of Tb3+ obtained by thermal decomposition of terbium sulfate hydrates under different atmospheres, J. Therm. Anal. Calorim., 122(2015), No. 2, p. 765. doi: 10.1007/s10973-015-4786-7
    [37]
    T. Hirai and T. Orikoshi, Preparation of Gd2O3: Yb, Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system, J. Colloid Interface Sci., 269(2004), No. 1, p. 103. doi: 10.1016/j.jcis.2003.08.026
    [38]
    J. Thirumalai, R. Chandramohan, S. Auluck, T. Mahalingam, and S.R. Srikumar, Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures, J. Colloid Interface Sci., 336(2009), No. 2, p. 889. doi: 10.1016/j.jcis.2009.04.042
    [39]
    J.B. Lian, X.D. Sun, J.G. Li, and X.D. Li, Synthesis, characterization and photoluminescence properties of (Gd0.99, Pr0.01)2O2S sub-microphosphor by homogeneous precipitation method, Opt. Mater., 33(2011), No. 4, p. 596. doi: 10.1016/j.optmat.2010.11.005
    [40]
    J. Cichos, M. Karbowiak, D. Hreniak, and W. Stręk, Synthesis and characterization of monodisperse Eu3+ doped gadolinium oxysulfide nanocrystals, J. Rare Earths, 34(2016), No. 8, p. 850. doi: 10.1016/S1002-0721(16)60105-9
    [41]
    K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, and H. Hosono, Transparent p-type semiconductor: LaCuOS layered oxysulfide, Appl. Phys. Lett., 77(2000), No. 17, p. 2701. doi: 10.1063/1.1319507
    [42]
    J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, and T.R.N. Kutty, Eu3+ doped yttrium oxysulfide nanocrystals–crystallite size and luminescence transition(s), Chem. Phys. Lett., 387(2004), No. 1-3, p. 23. doi: 10.1016/j.cplett.2004.01.079
    [43]
    V.V. Bakovets, T.M. Levashova, I.Y. Filatova, E.A. Maksimovskii, and A.E. Kupcha, Vapor phase growth of nanostructured yttrium oxysulfide films, Inorg. Mater., 44(2008), No. 1, p. 67. doi: 10.1134/S0020168508010111
    [44]
    J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15(1966), No. 2, p. 627. doi: 10.1002/pssb.19660150224
    [45]
    E.A. Davis and N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22(1970), No. 179, p. 0903. doi: 10.1080/14786437008221061
    [46]
    B.C. Qiu, C. Wang, N. Zhang, L.J. Cai, Y.J. Xiong, and Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation, ACS Catal., 9(2019), No. 7, p. 6484. doi: 10.1021/acscatal.9b01819
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(592) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return