Zhi-yuan Feng, Wen-jie Peng, Zhi-xing Wang, Hua-jun Guo, Xin-hai Li, Guo-chun Yan, and Jie-xi Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1549-1564. https://doi.org/10.1007/s12613-021-2335-x
Cite this article as:
Zhi-yuan Feng, Wen-jie Peng, Zhi-xing Wang, Hua-jun Guo, Xin-hai Li, Guo-chun Yan, and Jie-xi Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1549-1564. https://doi.org/10.1007/s12613-021-2335-x
Invited Review

Review of silicon-based alloys for lithium-ion battery anodes

+ Author Affiliations
  • Corresponding author:

    Xin-hai Li    E-mail: xinhaili_csu@126.com

  • Received: 16 June 2021Revised: 19 July 2021Accepted: 23 July 2021Available online: 24 July 2021
  • Silicon (Si) is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium (Li)-ion batteries (LIBs) because it has a high theoretical gravimetric Li storage capacity, relatively low lithiation voltage, and abundant resources. Consequently, massive efforts have been exerted to improve its electrochemical performance. While some progress in this field has been achieved, a number of severe challenges, such as the element’s large volume change during cycling, low intrinsic electronic conductivity, and poor rate capacity, have yet to be solved. Methods to solve these problems have been attempted via the development of nanosized Si materials. Unfortunately, reviews summarizing the work on Si-based alloys are scarce. Herein, the recent progress related to Si-based alloy anode materials is reviewed. The problems associated with Si anodes and the corresponding strategies used to address these problems are first described. Then, the available Si-based alloys are divided into Si/Li-active and inactive systems, and the characteristics of these systems are discussed. Other special systems are also introduced. Finally, perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs.

  • loading
  • [1]
    J. Zhang, P. Gu, J. Xu, H.G. Xue, and H. Pang, High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries, Nanoscale, 8(2016), No. 44, p. 18578. doi: 10.1039/C6NR07207K
    [2]
    X. Gui, G.D. Hao, and W.F. Jiang, A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries, Ionics, 26(2020), No. 3, p. 1081. doi: 10.1007/s11581-019-03375-w
    [3]
    S.A. Klankowski, R.A. Rojeski, B.A. Cruden, J.W. Liu, J. Wu, and J. Li, A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers, J. Mater. Chem. A, 1(2013), No. 4, p. 1055. doi: 10.1039/C2TA00057A
    [4]
    Y.Y. Xiang, J.S. Li, J.H. Lei, D. Liu, Z.Z. Xie, D.Y. Qu, K. Li, T.F. Deng, and H.L. Tang, Advanced separators for lithium-ion and lithium–sulfur batteries: A review of recent progress, ChemSusChem, 9(2016), No. 21, p. 3023. doi: 10.1002/cssc.201600943
    [5]
    L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
    [6]
    A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
    [7]
    X.H. Shen, Z.Y. Tian, R.J. Fan, L. Shao, D.P. Zhang, G.L. Cao, L. Kou, and Y.Z. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery, J. Energy Chem., 27(2018), No. 4, p. 1067. doi: 10.1016/j.jechem.2017.12.012
    [8]
    J. Lu, Z.W. Chen, F. Pan, Y. Cui, and K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 1(2018), No. 1, p. 35. doi: 10.1007/s41918-018-0001-4
    [9]
    P. Li, G.Q. Zhao, X.B. Zheng, X. Xu, C.H. Yao, W.P. Sun, and S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Mater., 15(2018), p. 422. doi: 10.1016/j.ensm.2018.07.014
    [10]
    M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444. doi: 10.1021/cr500207g
    [11]
    C.M. Park, J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39(2010), No. 8, p. 3115. doi: 10.1039/b919877f
    [12]
    M.D. Bhatt and J.Y. Lee, High capacity conversion anodes in Li-ion batteries: A review, Int. J. Hydrogen Energy, 44(2019), No. 21, p. 10852. doi: 10.1016/j.ijhydene.2019.02.015
    [13]
    R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21(2011), No. 27, art. No. 9938. doi: 10.1039/c0jm04225k
    [14]
    D.L. Ma, Z.Y. Cao, and A.M. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano Micro Lett., 6(2014), No. 4, p. 347. doi: 10.1007/s40820-014-0008-2
    [15]
    B.H. Park, J.H. Jeong, G.W. Lee, Y.H. Kim, K.C. Roh, and K.B. Kim, Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode, J. Power Sources, 394(2018), p. 94. doi: 10.1016/j.jpowsour.2018.04.112
    [16]
    Z. Yan and J.C. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy, 63(2019), art. No. 103845. doi: 10.1016/j.nanoen.2019.06.041
    [17]
    L.L. Ma, D.S. Guan, F.F. Wang, and C. Yuan, Environmental emissions from chemical etching synthesis of silicon nanotube for lithium ion battery applications, J. Manuf. Mater. Process., 2(2018), No. 1, art. No. 11.
    [18]
    D.T. Ngo, H.T.T. Le, X.M. Pham, C.N. Park, and C.J. Park, Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 38, p. 32790. doi: 10.1021/acsami.7b10658
    [19]
    S.S. Zhu, J.B. Zhou, Y. Guan, W.L. Cai, Y.Y. Zhao, Y.C. Zhu, L.Q. Zhu, Y.C. Zhu, and Y.T. Qian, Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries, Small, 14(2018), No. 47, art. No. 1802457. doi: 10.1002/smll.201802457
    [20]
    F.H. Du, K.X. Wang, and J.S. Chen, Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials, J. Mater. Chem. A, 4(2016), No. 1, p. 32. doi: 10.1039/C5TA06962A
    [21]
    U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003. doi: 10.1016/j.jpowsour.2006.09.084
    [22]
    M.A. Rahman, G.S. Song, A.I. Bhatt, Y.C. Wong, and C.E. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26(2016), No. 5, p. 647. doi: 10.1002/adfm.201502959
    [23]
    L. Sun, J. Xie, and Z. Jin, Different dimensional nanostructured silicon materials: From synthesis methodology to application in high-energy lithium-ion batteries, Energy Technol., 7(2019), No. 11, art. No. 1900962. doi: 10.1002/ente.201900962
    [24]
    X.Y. Zhu, D.J. Yang, J.J. Li, and F.B. Su, Nanostructured Si-based anodes for lithium-ion batteries, J. Nanosci. Nanotechnol., 15(2015), No. 1, p. 15. doi: 10.1166/jnn.2015.9712
    [25]
    M. Ashuri, Q.R. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter, Nanoscale, 8(2016), No. 1, p. 74. doi: 10.1039/C5NR05116A
    [26]
    J.T. Wang, J.Y. Yang, and S.G. Lu, A mini review: Nanostructured silicon-based materials for lithium ion battery, Nanosci. Nanotechnol. - Asia, 6(2016), No. 1, p. 3. doi: 10.2174/221068120601160302171553
    [27]
    J. Li and J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154(2007), No. 3, art. No. A156. doi: 10.1149/1.2409862
    [28]
    T.D. Hatchard and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151(2004), No. 6, art. No. A838. doi: 10.1149/1.1739217
    [29]
    M.N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7(2004), No. 5, art. No. A93. doi: 10.1149/1.1652421
    [30]
    M. Shimizu, H. Usui, T. Suzumura, and H. Sakaguchi, Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy, J. Phys. Chem. C, 119(2015), No. 6, p. 2975. doi: 10.1021/jp5121965
    [31]
    H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7(2012), No. 5, p. 414. doi: 10.1016/j.nantod.2012.08.004
    [32]
    W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 3, p. 877. doi: 10.1016/j.jpowsour.2010.08.114
    [33]
    A. Anani and R.A. Huggins, Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials, J. Power Sources, 38(1992), No. 3, p. 351. doi: 10.1016/0378-7753(92)80125-U
    [34]
    Y.X. Liu, W. Sun, X.X. Lan, R.Z. Hu, J. Cui, J. Liu, J.W. Liu, Y. Zhang, and M. Zhu, Adding metal carbides to suppress the crystalline Li15Si4 formation: A route toward cycling durable Si-based anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38727. doi: 10.1021/acsami.9b13024
    [35]
    J. Yang, Y.H. Lin, B.S. Guo, M.S. Wang, J.C. Chen, Z.Y. Ma, Y. Huang, and X. Li, Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
    [36]
    Q.K. Du, Q.X. Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Ling, Metallurgy, Carbon dot-modified silicon nanoparticles for lithium ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
    [37]
    K.M. Lee, Y.S. Lee, Y.W. Kim, Y.K. Sun, and S.M. Lee, Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling, J. Alloys Compd., 472(2009), No. 1-2, p. 461. doi: 10.1016/j.jallcom.2008.04.102
    [38]
    I.S. Kim, P.N. Kumta, and G.E. Blomgren, Si/TiN nanocomposites novel anode materials for Li-ion batteries, Electrochem. Solid-State Lett., 3(1999), No. 11, art. No. 493. doi: 10.1149/1.1391189
    [39]
    M.R. Jo, Y.U. Heo, Y.C. Lee, and Y.M. Kang, A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage, Nanoscale, 6(2014), No. 2, p. 1005. doi: 10.1039/C3NR04954J
    [40]
    L.W. Ji and X.W. Zhang, Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes, Electrochem. Commun., 11(2009), No. 6, p. 1146. doi: 10.1016/j.elecom.2009.03.042
    [41]
    S.Q. Chen, P.T. Bao, X.D. Huang, B. Sun, and G.X. Wang, Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance, Nano Res., 7(2014), No. 1, p. 85. doi: 10.1007/s12274-013-0374-y
    [42]
    Y.J. Qiao, H. Zhang, Y.X. Hu, W.P. Li, W.J. Liu, H.M. Shang, M.Z. Qu, G.C. Peng, and Z.W. Xie, A chain-like compound of Si@CNTs nanostructure and MOF-derived porous carbon as anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
    [43]
    S.R. Gowda, V. Pushparaj, S. Herle, G. Girishkumar, J.G. Gordon, H. Gullapalli, X.B. Zhan, P.M. Ajayan, and A.L.M. Reddy, Three-dimensionally engineered porous silicon electrodes for Li ion batteries, Nano Lett., 12(2012), No. 12, p. 6060. doi: 10.1021/nl302114j
    [44]
    M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roué, A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries, Energy Environ. Sci., 6(2013), No. 7, art. No. 2145. doi: 10.1039/c3ee41318g
    [45]
    L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
    [46]
    T. Li, J.Y. Yang, and S.G. Lu, Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 752. doi: 10.1007/s12613-012-0623-1
    [47]
    X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6(2012), No. 2, p. 1522. doi: 10.1021/nn204476h
    [48]
    I. Ryu, J.W. Choi, Y. Cui, and W.D. Nix, Size-dependent fracture of Si nanowire battery anodes, J. Mech. Phys. Solids, 59(2011), No. 9, p. 1717. doi: 10.1016/j.jmps.2011.06.003
    [49]
    C. Wang, J.C. Wen, F. Luo, B.G. Quan, H. Li, Y.J. Wei, C.Z. Gu, and J.J. Li, Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation, J. Mater. Chem. A, 7(2019), No. 25, p. 15113. doi: 10.1039/C9TA00519F
    [50]
    Y. Chen, S. Zeng, J.F. Qian, Y.D. Wang, Y.L. Cao, H.X. Yang, and X.P. Ai, Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 5, p. 3508. doi: 10.1021/am4056672
    [51]
    W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 1, p. 13. doi: 10.1016/j.jpowsour.2010.07.020
    [52]
    J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries, J. Power Sources, 124(2003), No. 1, p. 241. doi: 10.1016/S0378-7753(03)00731-6
    [53]
    H. Kim, J. Choi, H.J. Sohn, and T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries, J. Electrochem. Soc., 146(1999), No. 12, p. 4401. doi: 10.1149/1.1392650
    [54]
    T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, Reaction mechanism of metal silicide Mg2Si for Li insertion, J. Solid State Chem., 153(2000), No. 2, p. 386.
    [55]
    G.A. Roberts, E.J. Cairns, and J.A. Reimer, Magnesium silicide as a negative electrode material for lithium-ion batteries, J. Power Sources, 110(2002), No. 2, p. 424. doi: 10.1016/S0378-7753(02)00207-0
    [56]
    C.S. Fuller and J.C. Severiens, Mobility of impurity ions in germanium and silicon, Phys. Rev., 96(1954), No. 1, p. 21. doi: 10.1103/PhysRev.96.21
    [57]
    H. Kim, Y. Son, C. Park, M.J. Lee, M.S. Hong, J. Kim, M. Lee, J. Cho, and H.C. Choi, Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation, Nano Lett., 15(2015), No. 6, p. 4135. doi: 10.1021/acs.nanolett.5b01257
    [58]
    Y.H. Yang, S. Liu, X.F. Bian, J.K. Feng, Y.L. An, and C. Yuan, Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode, ACS Nano, 12(2018), No. 3, p. 2900. doi: 10.1021/acsnano.8b00426
    [59]
    N. Bensalah, M. Matalkeh, N.K. Mustafa, and H. Merabet, Binary Si–Ge alloys as high-capacity anodes for Li-ion batteries, Phys. Status Solidi A, 217(2020), No. 1, art. No. 1900414. doi: 10.1002/pssa.201900414
    [60]
    D. Duveau, B. Fraisse, F. Cunin, and L. Monconduit, Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1–x electrodes for Li ion batteries, Chem. Mater., 27(2015), No. 9, p. 3226. doi: 10.1021/cm504413g
    [61]
    P.R. Abel, A.M. Chockla, Y.M. Lin, V.C. Holmberg, J.T. Harris, B.A. Korgel, A. Heller, and C.B. Mullins, Nanostructured Si(1−x)Gex for tunable thin film lithium-ion battery anodes, ACS Nano, 7(2013), No. 3, p. 2249. doi: 10.1021/nn3053632
    [62]
    K. Stokes, G. Flynn, H. Geaney, G. Bree, and K.M. Ryan, Axial Si−Ge heterostructure nanowires as lithium-ion battery anodes, Nano Lett., 18(2018), No. 9, p. 5569. doi: 10.1021/acs.nanolett.8b01988
    [63]
    J. Ahn, B. Kim, G. Jang, and J. Moon, Magnesiothermic reduction-enabled synthesis of Si−Ge alloy nanoparticles with a canyon-like surface structure for Li-ion battery, ChemElectroChem, 5(2018), No. 19, p. 2729. doi: 10.1002/celc.201800756
    [64]
    A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, and S. Passerini, Batteries: 3D porous Cu−Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance, Adv. Energy Mater., 8(2018), No. 1, art. No. 1870001. doi: 10.1002/aenm.201870001
    [65]
    Z.Z. Chen, X.R. Wang, T.Z. Jian, J.G. Hou, J.H. Zhou, and C.X. Xu, One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries, Solid State Ionics, 354(2020), art. No. 115406. doi: 10.1016/j.ssi.2020.115406
    [66]
    S. Saager, B. Scheffel, O. Zywitzki, T. Modes, M. Piwko, S. Doerfler, H. Althues, and C. Metzner, Porous silicon thin films as anodes for lithium ion batteries deposited by co-evaporation of silicon and zinc, Surf. Coat. Technol., 358(2019), p. 586. doi: 10.1016/j.surfcoat.2018.11.064
    [67]
    R. Alcántara, M. Tillard-Charbonnel, L. Spina, C. Belin, and J.L. Tirado, Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi, Electrochimica Acta, 47(2002), No. 7, p. 1115. doi: 10.1016/S0013-4686(01)00817-9
    [68]
    W.W. Li, X.W. Li, J. Liao, B.T. Zhao, L. Zhang, L. Huang, G.P. Liu, Z.P. Guo, and M.L. Liu, A new family of cation-disordered Zn(Cu)−Si−P compounds as high-performance anodes for next-generation Li-ion batteries, Energy Environ. Sci., 12(2019), No. 7, p. 2286. doi: 10.1039/C9EE00953A
    [69]
    W.W. Li, J. Liao, X.W. Li, L. Zhang, B.T. Zhao, Y. Chen, Y.C. Zhou, Z.P. Guo, and M.L. Liu, Zn(Cu)Si2+xP3 solid solution anodes for high-performance Li-ion batteries with tunable working potentials, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903638. doi: 10.1002/adfm.201903638
    [70]
    J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a-Si∕Cu: Active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153(2006), No. 6, art. No. A1246. doi: 10.1149/1.2184753
    [71]
    G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, and H.K. Liu, Innovative nanosize lithium storage alloys with silica as active centre, J. Power Sources, 88(2000), No. 2, p. 278. doi: 10.1016/S0378-7753(00)00385-2
    [72]
    Y. Chen, J.F. Qian, Y.L. Cao, H.X. Yang, and X.P. Ai, Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries, ACS Appl. Mater. Interfaces, 4(2012), No. 7, p. 3753. doi: 10.1021/am300952b
    [73]
    X.Y. Wang, Z.Y. Wen, Y. Liu, L.Z. Huang, and M.F. Wu, Study on Si−Ti alloy dispersed in a glassy matrix as an anode material for lithium-ion batteries, J. Alloys Compd., 506(2010), No. 1, p. 317. doi: 10.1016/j.jallcom.2010.06.199
    [74]
    M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Combinatorial investigations of Si−M (M = Cr + Ni, Fe, Mn) thin film negative electrode materials, Electrochem. Solid-State Lett., 8(2005), No. 2, art. No. A137. doi: 10.1149/1.1850395
    [75]
    H.T. Kwon, A.R. Park, S.S. Lee, H. Cho, H. Jung, and C.M. Park, Nanostructured Si−FeSi2−graphite−C composite: An optimized and practical solution for Si-based anodes for superior Li-ion batteries, J. Electrochem. Soc., 166(2019), No. 10, p. A2221. doi: 10.1149/2.1401910jes
    [76]
    S. Yoon, S.I. Lee, H. Kim, and H.J. Sohn, Enhancement of capacity of carbon-coated Si−Cu3Si composite anode using metal-organic compound for lithium-ion batteries, J. Power Sources, 161(2006), No. 2, p. 1319. doi: 10.1016/j.jpowsour.2006.06.035
    [77]
    L. Deng, Z.Y. Wu, Z.W. Yin, Y.Q. Lu, Z.G. Huang, J.H. You, J.T. Li, L. Huang, and S.G. Sun, High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries, Electrochim. Acta, 260(2018), p. 830. doi: 10.1016/j.electacta.2017.12.048
    [78]
    Y. Domi, H. Usui, R. Takaishi, and H. Sakaguchi, Lithiation and delithiation reactions of binary silicide electrodes in an ionic liquid electrolyte as novel anodes for lithium-ion batteries, ChemElectroChem, 6(2019), No. 2, p. 581. doi: 10.1002/celc.201801088
    [79]
    C.H. Doh, N. Kalaiselvi, C.W. Park, B.S. Jin, S.I. Moon, and M.S. Yun, Synthesis and electrochemical characterization of novel high capacity Si3−xFexN4 anode for rechargeable lithium batteries, Electrochem. Commun., 6(2004), No. 10, p. 965. doi: 10.1016/j.elecom.2004.07.011
    [80]
    M.X. Gao, D.S. Wang, X.Q. Zhang, H.G. Pan, Y.F. Liu, C. Liang, C.X. Shang, and Z.X. Guo, A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis, J. Mater. Chem. A, 3(2015), No. 20, p. 10767. doi: 10.1039/C5TA01251A
    [81]
    T. Li, Y.L. Cao, X.P. Ai, and H.X. Yang, Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries, J. Power Sources, 184(2008), No. 2, p. 473. doi: 10.1016/j.jpowsour.2008.02.057
    [82]
    M. Ruttert, V. Siozios, M. Winter, and T. Placke, Mechanochemical synthesis of Fe–Si-based anode materials for high-energy lithium ion full-cells, ACS Appl. Energy Mater., 3(2020), No. 1, p. 743. doi: 10.1021/acsaem.9b01926
    [83]
    Z.J. Du, S.N. Ellis, R.A. Dunlap, and M.N. Obrovac, NixSi1−x alloys prepared by mechanical milling as negative electrode materials for lithium ion batteries, J. Electrochem. Soc., 163(2015), No. 2, p. A13.
    [84]
    M. Ruttert, V. Siozios, M. Winter, and T. Placke, Synthesis and comparative investigation of silicon transition metal silicide composite anodes for lithium ion batteries, Z. Anorg. Allg. Chem., 645(2019), No. 3, p. 248. doi: 10.1002/zaac.201800436
    [85]
    P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, and Q.H. Yuan, Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries, Electrochim. Acta, 192(2016), p. 385. doi: 10.1016/j.electacta.2016.01.223
    [86]
    H.P. Jia, C. Stock, R. Kloepsch, X. He, J.P. Badillo, O. Fromm, B. Vortmann, M. Winter, and T. Placke, Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 3, p. 1508. doi: 10.1021/am506486w
    [87]
    M. Chen, Q.S. Jing, H.B. Sun, J.Q. Xu, Z.Y. Yuan, J.T. Ren, A.X. Ding, Z.Y. Huang, and M.Y. Dong, Engineering the core-shell-structured NCNTs−Ni2Si@porous Si composite with robust Ni−Si interfacial bonding for high-performance Li-ion batteries, Langmuir, 35(2019), No. 19, p. 6321. doi: 10.1021/acs.langmuir.9b00558
    [88]
    N. Umirov, D.H. Seo, T. Kim, H.Y. Kim, and S.S. Kim, Microstructure and electrochemical properties of rapidly solidified Si–Ni alloys as anode for lithium-ion batteries, J. Ind. Eng. Chem., 71(2019), p. 351. doi: 10.1016/j.jiec.2018.11.046
    [89]
    X. Han, H.X. Chen, X. Li, S.M. Lai, Y.H. Xu, C. Li, S.Y. Chen, and Y. Yang, NiSix/a-Si nanowires with interfacial a-Ge as anodes for high-rate lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 1, p. 673. doi: 10.1021/acsami.5b09783
    [90]
    Q.R. Liu, Y. Gao, P.G. He, C. Yan, Y. Gao, J.Z. Gao, H.B. Lu, and Z.B. Yang, Facile fabrication of hollow structured Si–Ni–C nanofabric anode for Li-ion battery, Mater. Lett., 231(2018), p. 205. doi: 10.1016/j.matlet.2018.08.044
    [91]
    Y. Zhou, M.R. Su, A.C. Dou, and Y.J. Liu, Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode, J. Electroanal. Chem., 873(2020), art. No. 114398. doi: 10.1016/j.jelechem.2020.114398
    [92]
    Y.K. Wang, S.M. Cao, M. Kalinina, L.T. Zheng, L.J. Li, M. Zhu, and M.N. Obrovac, Lithium insertion in nanostructured Si1−xTix alloys, J. Electrochem. Soc., 164(2017), No. 13, p. A3006. doi: 10.1149/2.0491713jes
    [93]
    S. Zhou, X.H. Liu, and D.W. Wang, Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries, Nano Lett., 10(2010), No. 3, p. 860. doi: 10.1021/nl903345f
    [94]
    Z.H. Yan, M. Oehring, and R. Bormann, Metastable phase formation in mechanically alloyed and ball milled Ti–Si, J. Appl. Phys., 72(1992), No. 6, p. 2478. doi: 10.1063/1.351594
    [95]
    Z. Dong, H.T. Gu, W.B. Du, Z.H. Feng, C.Y. Zhang, Y.Z. Jiang, T.J. Zhu, G.R. Chen, J. Chen, Y.F. Liu, M.X. Gao, and H.G. Pan, Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries, J. Power Sources, 431(2019), p. 55. doi: 10.1016/j.jpowsour.2019.05.043
    [96]
    H.I. Park, M. Sohn, J.H. Choi, C. Park, J.H. Kim, and H. Kim, Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation, Electrochim. Acta, 210(2016), p. 301. doi: 10.1016/j.electacta.2016.05.168
    [97]
    Y.N. NuLi, B.F. Wang, J. Yang, X.X. Yuan, and Z.F. Ma, Cu5Si–Si/C composites for lithium-ion battery anodes, J. Power Sources, 153(2006), No. 2, p. 371. doi: 10.1016/j.jpowsour.2005.05.023
    [98]
    W.Q. Ma, X.Z. Liu, X. Wang, Z.F. Wang, R.E. Zhang, Z.H. Yuan, and Y. Ding, Crystalline Cu-silicide stabilizes the performance of a high capacity Si-based Li-ion battery anode, J. Mater. Chem. A, 4(2016), No. 48, p. 19140. doi: 10.1039/C6TA08740J
    [99]
    G.L. Lu, F.H. Liu, X. Chen, and J.F. Yang, Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries, J. Alloys Compd., 809(2019), art. No. 151750. doi: 10.1016/j.jallcom.2019.151750
    [100]
    Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng, Fabrication and understanding of Cu3Si–Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries, Nanoscale, 10(2018), No. 47, p. 22203. doi: 10.1039/C8NR07207H
    [101]
    S.C. Hou, T.Y. Chen, Y.H. Wu, H.Y. Chen, X.D. Lin, Y.Q. Chen, J.L. Huang, and C.C. Chang, Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery, Sci. Rep., 8(2018), art. No. 12695. doi: 10.1038/s41598-018-30703-3
    [102]
    W.F. Ren, J.T. Li, S.J. Zhang, A.L. Lin, Y.H. Chen, Z.G. Gao, Y. Zhou, L. Deng, L. Huang, and S.G. Sun, Fabrication of multi-shell coated silicon nanoparticles via in situ electroless deposition as high performance anodes for lithium ion batteries, J. Energy Chem., 48(2020), p. 160. doi: 10.1016/j.jechem.2020.01.001
    [103]
    S.S. Lee, K.H. Nam, H. Jung, and C.M. Park, Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes, Chem. Eng. J., 381(2020), art. No. 122619. doi: 10.1016/j.cej.2019.122619
    [104]
    I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, and K.M. Ryan, A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2003278. doi: 10.1002/adfm.202003278
    [105]
    J.Y. Woo, A.Y. Kim, M.K. Kim, S.H. Lee, Y.K. Sun, G.C. Liu, and J.K. Lee, Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries, J. Alloys Compd., 701(2017), p. 425. doi: 10.1016/j.jallcom.2017.01.137
    [106]
    H. Zhang, H. Xu, X.F. Lou, H. Jin, P. Zong, S.W. Li, Y. Bai, and F. Ma, Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries, Ionics, 25(2019), No. 10, p. 4667. doi: 10.1007/s11581-019-03043-z
    [107]
    K. Stokes, H. Geaney, M. Sheehan, D. Borsa, and K.M. Ryan, Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes, Nano Lett., 19(2019), No. 12, p. 8829. doi: 10.1021/acs.nanolett.9b03664
    [108]
    J.F. Guo, S.E. Pei, Z.S. He, L.A. Huang, T.Z. Lu, J.J. Gong, H.B. Shao, and J.M. Wang, Novel porous Si–Cu3Si–Cu microsphere composites with excellent electrochemical lithium storage, Electrochim. Acta, 348(2020), art. No. 136334. doi: 10.1016/j.electacta.2020.136334
    [109]
    S.B. Son, S.C. Kim, C.S. Kang, T.A. Yersak, Y.C. Kim, C.G. Lee, S.H. Moon, J.S. Cho, J.T. Moon, K.H. Oh, and S.H. Lee, A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated LixTi4Ni4Si7 matrix, Adv. Energy Mater., 2(2012), No. 10, p. 1226. doi: 10.1002/aenm.201200180
    [110]
    K.J. Lee, S.H. Yu, J.J. Kim, D.H. Lee, J. Park, S.S. Suh, J.S. Cho, and Y.E. Sung, Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries, J. Power Sources, 246(2014), p. 729. doi: 10.1016/j.jpowsour.2013.08.033
    [111]
    X.M. Li, F.E. Kersey-Bronec, J. Ke, J.E. Cloud, Y.L. Wang, C. Ngo, S. Pylypenko, and Y.G. Yang, Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 19, p. 16071. doi: 10.1021/acsami.6b16773
    [112]
    J.E. Cloud, Y.L. Wang, X.M. Li, T.S. Yoder, Y. Yang, and Y.A. Yang, Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation, Inorg. Chem., 53(2014), No. 20, p. 11289. doi: 10.1021/ic501923s
    [113]
    H.W. Park, J.H. Song, H. Choi, J.S. Jin, and H.T. Lim, Anode performance of lithium–silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries, Jpn. J. Appl. Phys., 53(2014), No. 8S3, art. No. 08NK02. doi: 10.7567/JJAP.53.08NK02
    [114]
    C. Wang, Y.Y. Han, S.H. Li, T. Chen, J.M. Yu, and Z.D. Lu, Thermal lithiated-TiO2: A robust and electron-conducting protection layer for Li–Si alloy anode, ACS Appl. Mater. Interfaces, 10(2018), No. 15, p. 12750. doi: 10.1021/acsami.8b02150
    [115]
    C. Wang, J.M. Yu, S.H. Li, and Z.D. Lu, Boosting the cycling stability of LixSi alloy microparticles through electroless copper deposition, Chem. Eng. J., 370(2019), p. 1019. doi: 10.1016/j.cej.2019.03.205
    [116]
    Z.P. Guo, Z.W. Zhao, H.K. Liu, and S.X. Dou, Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling, J. Power Sources, 146(2005), No. 1-2, p. 190. doi: 10.1016/j.jpowsour.2005.03.113
    [117]
    I.S. Kim, G.E. Blomgren, and P.N. Kumta, Nanostructured Si/TiB2 composite anodes for Li-ion batteries, Electrochem. Solid-State Lett., 6(2003), No. 8, art. No. A157. doi: 10.1149/1.1584212
    [118]
    G.Q. Wang, Z.S. Wen, Y.-E. Yang, J.P. Yin, W.Q. Kong, S. Li, J.C. Sun, and S.J. Ji, Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries, J. Mater. Chem. A., 6(2018), No. 17, p. 7557. doi: 10.1039/C8TA00539G
    [119]
    C. Loka, H. Yu, K.S. Lee, and J. Cho, Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries, J. Power Sources, 244(2013), p. 259. doi: 10.1016/j.jpowsour.2013.01.107
    [120]
    Y. Wang, S.M. Cao, H. Liu, M. Zhu, and M.N. Obrovac, Si–TiN alloy Li-ion battery negative electrode materials made by N2 gas milling, MRS Commun., 8(2018), No. 3, p. 1352. doi: 10.1557/mrc.2018.178
    [121]
    Y.D. Cao, B. Scott, R.A. Dunlap, J. Wang, and M.N. Obrovac, An investigation of the Fe–Mn–Si system for Li-ion battery negative electrodes, J. Electrochem. Soc., 166(2019), No. 2, p. A21. doi: 10.1149/2.1111816jes
    [122]
    S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries, Energy Environ. Sci., 9(2016), No. 4, p. 1251. doi: 10.1039/C6EE00023A
    [123]
    L. MacEachern, R.A. Dunlap, and M.N. Obrovac, Mechanically milled Fe–Si–Zn alloys as negative electrodes for Li-ion batteries, J. Electrochem. Soc., 162(2015), No. 12, p. A2319. doi: 10.1149/2.0601512jes
    [124]
    N. Umirov, D.H. Seo, H.Y. Kim, and S.S. Kim, Pragmatic approach to design silicon alloy anode by the equilibrium method, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17406. doi: 10.1021/acsami.9b21997
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(6284) PDF Downloads(885) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return