Changyu Ren, Caide Huang, Lifeng Zhang, and Ying Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 345-353. https://doi.org/10.1007/s12613-021-2347-6
Cite this article as:
Changyu Ren, Caide Huang, Lifeng Zhang, and Ying Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 345-353. https://doi.org/10.1007/s12613-021-2347-6
Research Article

In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy

+ Author Affiliations
  • Corresponding authors:

    Lifeng Zhang    E-mail: zhanglifeng@ncut.edu.cn

    Ying Ren    E-mail: yingren@ustb.edu.cn

  • Received: 2 August 2021Revised: 29 August 2021Accepted: 30 August 2021Available online: 31 August 2021
  • The dissolution kinetics of Al2O3 in CaO–Al2O3–SiO2 slags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K. The results show that the controlling step during the Al2O3 dissolution was the diffusion in molten slag. It was found that the dissolution curves of Al2O3 particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al2O3 ratio of slag. A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al2O3 in slag. Diffusion coefficients of Al2O3 in slag were calculated as 2.8 × 10−10 to 4.1 × 10−10 m2/s at the temperature of 1773–1873 K. The dissolution rate of Al2O3 increased with higher temperature, CaO/Al2O3, and particle size. A new model was shown to be ${v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}}=0.16\times {r}_{0}^{1.58}\times $$ {x}^{3.52}\times {\left(T-{T}_{\mathrm{m}\mathrm{p}}\right)}^{1.11} $ to predict the dissolution rate and the total dissolution time of Al2O3 inclusions with various sizes, where $ {v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}} $ is the dissolution rate of Al2O3 in volume, μm3/s; x is the value of CaO/Al2O3 mass ratio; R0 is the initial radius of Al2O3, μm; T is the temperature, K; Tmp is the melting point of slag, K.
  • loading
  • [1]
    L.F. Zhang and B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int., 43(2003), No. 3, p. 271. doi: 10.2355/isijinternational.43.271
    [2]
    L.F. Zhang. Non-metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2019.
    [3]
    L.F. Zhang. Non-metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, Beijing, 2019.
    [4]
    C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
    [5]
    W. Xiao, Y.P. Bao, C. Gu, M. Wang, Y. Liu, Y.S. Huang, and G.T. Sun, Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804. doi: 10.1007/s12613-021-2253-y
    [6]
    L.F. Zhang and B.G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metall. Mater. Trans. B, 37(2006), No. 5, p. 733. doi: 10.1007/s11663-006-0057-0
    [7]
    A.L.V. da Costa e Silva, Non-metallic inclusions in steels – origin and control, J. Mater. Res. Technol., 7(2018), No. 3, p. 283. doi: 10.1016/j.jmrt.2018.04.003
    [8]
    J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
    [9]
    M. Jiang, J.C. Liu, K.L. Li, R.G. Wang, and X.H. Wang, Formation mechanism of large CaO–SiO2–Al2O3 inclusions in Si-deoxidized spring steel refined by low basicity slag, Metall. Mater. Trans. B, 52(2021), No. 4, p. 1950. doi: 10.1007/s11663-021-02230-6
    [10]
    Y. Liu, X. Zhang, P. Wang, and D.Z. Li, Investigation on inclusions in non-oriented silicon steels, Metall. Mater. Trans. B, 51(2020), No. 1, p. 22. doi: 10.1007/s11663-019-01735-5
    [11]
    L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253. doi: 10.1007/s11663-000-0044-9
    [12]
    F. Yuan, A.J. Xu, and M.Q. Gu, Development of an improved CBR model for predicting steel temperature in ladle furnace refining, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1321. doi: 10.1007/s12613-020-2234-6
    [13]
    H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 256. doi: 10.1007/s12613-021-2298-y
    [14]
    L.X. Zhang, M. Chen, M.Y. Huang, N. Wang, and C. Wang, Dissolution kinetics of SiO2 in FeO–SiO2–V2O3–CaO–MnO–Cr2O3–TiO2 system with different FeO contents, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2703. doi: 10.1007/s11663-021-02214-6
    [15]
    G.J. Chen, S.P. He, and Q. Wang, Dissolution behavior of Al2O3 into tundish slag for high-Al steel, J. Mater. Res. Technol., 9(2020), No. 5, p. 11311. doi: 10.1016/j.jmrt.2020.07.107
    [16]
    Z.R. Li, B.R. Jia, Y.B. Zhang, S.P. He, Q.Q. Wang, and Q. Wang, Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content, Ceram. Int., 45(2019), No. 3, p. 4035. doi: 10.1016/j.ceramint.2018.11.082
    [17]
    G. Tripathi, A. Malfliet, B. Blanpain, and M.X. Guo, Dissolution behavior and phase evolution during aluminum oxide dissolution in BOF slag, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1782. doi: 10.1007/s11663-019-01590-4
    [18]
    Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang, Dissolution kinetics of alumina in molten CaO–Al2O3–FetO–MgO–SiO2 oxide representing the RH slag in steelmaking process, J. Am. Ceram. Soc., 103(2020), No. 3, p. 2210. doi: 10.1111/jace.16879
    [19]
    S. Sridhar and A.W. Cramb, Kinetics of Al2O3 dissolution in CaO–MgO–SiO2–Al2O3 slags: In situ observations and analysis, Metall. Mater. Trans. B, 31(2000), No. 2, p. 406. doi: 10.1007/s11663-000-0059-2
    [20]
    J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags, J. Eur. Ceram. Soc., 27(2007), No. 4, p. 1961. doi: 10.1016/j.jeurceramsoc.2006.05.107
    [21]
    J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3181. doi: 10.1016/j.jeurceramsoc.2010.07.020
    [22]
    S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, In situ observation of the dissolution of SiO2 particles in CaO–Al2O3–SiO2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc., 97(2014), No. 1, p. 316. doi: 10.1111/jace.12665
    [23]
    Y. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2–CaF2–MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251. doi: 10.1016/j.ceramint.2019.06.298
    [24]
    M. Sharma and N. Dogan, Dissolution behavior of aluminum titanate inclusions in steelmaking slags, Metall. Mater. Trans. B, 51(2020), No. 2, p. 570. doi: 10.1007/s11663-019-01762-2
    [25]
    K.Y. Miao, A. Haas, M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of calcium aluminate inclusions dissolution into steelmaking slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1612. doi: 10.1007/s11663-018-1303-y
    [26]
    T.L. Tian, Y.Z. Zhang, H.H. Zhang, K.X. Zhang, J. Li, and H. Wang, Dissolution behavior of SiO2 in the molten blast furnace slags, Int. J. Appl. Ceram. Technol., 16(2019), No. 3, p. 1078. doi: 10.1111/ijac.13120
    [27]
    C.Y. Ren, L.F. Zhang, J. Zhang, S.J. Wu, P. Zhu, and Y. Ren, In situ observation of the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3288. doi: 10.1007/s11663-021-02256-w
    [28]
    Y. Kim, Y. Kashiwaya, and Y. Chung, Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution, Ceram. Int., 46(2020), No. 5, p. 6205. doi: 10.1016/j.ceramint.2019.11.088
    [29]
    W.Z. Mu and C.J. Xuan, Phase-field study of dissolution behaviors of different oxide particles into oxide melts, Ceram. Int., 46(2020), No. 10, p. 14949. doi: 10.1016/j.ceramint.2020.03.023
    [30]
    C.J. Xuan and W.Z. Mu, A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates, J. Am. Ceram. Soc., 102(2019), No. 11, p. 6480. doi: 10.1111/jace.16509
    [31]
    J.J. Liu, J. Zou, M.X. Guo, and N. Moelans, Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags, Comput. Mater. Sci., 119(2016), p. 9. doi: 10.1016/j.commatsci.2016.03.034
    [32]
    J. Heulens, B. Blanpain, and N. Moelans, A phase field model for isothermal crystallization of oxide melts, Acta Mater., 59(2011), No. 5, p. 2156. doi: 10.1016/j.actamat.2010.12.016
    [33]
    Z.J. Wang and I. Sohn, A review of in situ observations of crystallization and growth in high temperature oxide melts, JOM, 70(2018), No. 7, p. 1210. doi: 10.1007/s11837-018-2887-z
    [34]
    I. Sohn and R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2083. doi: 10.1007/s11663-016-0675-0
    [35]
    D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, and P. Tang, Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation, J. Iron Steel Res. Int., 28(2021), No. 9, p. 1133. doi: 10.1007/s42243-020-00513-x
    [36]
    Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li, In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3137. doi: 10.1007/s11663-018-1411-8
    [37]
    Y.G. Wang and C.J. Liu, Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions, ISIJ Int., 61(2021), No. 5, p. 1396. doi: 10.2355/isijinternational.ISIJINT-2020-684
    [38]
    W.Z. Mu and C.J. Xuan, Agglomeration mechanism of complex Ti–Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2694. doi: 10.1007/s11663-019-01686-x
    [39]
    X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620. doi: 10.1007/s12613-019-1911-9
    [40]
    J. Guo, X.R. Chen, S.W. Han, Y. Yan, and H.J. Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr−8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 328. doi: 10.1007/s12613-019-1945-z
    [41]
    A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag, ISIJ Int., 44(2004), No. 5, p. 836. doi: 10.2355/isijinternational.44.836
    [42]
    J.H. Park and L.F. Zhang, Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2453. doi: 10.1007/s11663-020-01954-1
    [43]
    S. Lyu, X.D. Ma, Z.Z. Huang, Z. Yao, H.G. Lee, Z.H. Jiang, G. Wang, J. Zou, and B.J. Zhao, Formation mechanism of Al2O3-containing inclusions in Al-deoxidized spring steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2205. doi: 10.1007/s11663-019-01644-7
    [44]
    O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, Inc., the United States of America, 1999.
    [45]
    M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95. doi: 10.1179/msc.1969.3.1.95
    [46]
    H.B. Aaron, D. Fainstein, and G.R. Kotler, Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., 41(1970), No. 11, p. 4404. doi: 10.1063/1.1658474
    [47]
    L.C. Brown, Diffusion-controlled dissolution of planar, cylindrical, and spherical precipitates, J. Appl. Phys., 47(1976), No. 2, p. 449. doi: 10.1063/1.322669
    [48]
    F. Verhaeghe, S. Arnout, B. Blanpain, and P. Wollants, Lattice-Boltzmann modeling of dissolution phenomena, Phys. Rev. E, 73(2006), No. 3, art. No. 036316. doi: 10.1103/PhysRevE.73.036316
    [49]
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
    [50]
    K.C. Mills and B.J. Keene, Physical properties of BOS slags, Int. Mater. Rev., 32(1987), No. 1, p. 1. doi: 10.1179/095066087790150296
    [51]
    J. Ahrendts and S. Kabelac. Technische thermodynamik, [in] H. Czichos and M. Hennecke, eds., Hütte - Das Ingenieurwissen, Springer Berlin, Heidelberg, 2012, p. 925.
    [52]
    B.J. Monaghan and L. Chen, Dissolution behavior of alumina micro-particles in CaO–SiO2–Al2O3 liquid oxide, J. Non Cryst. Solids, 347(2004), No. 1-3, p. 254. doi: 10.1016/j.jnoncrysol.2004.09.011
    [53]
    M. Valdez, G.S. Shannon, and S. Sridhar, The ability of slags to absorb solid oxide inclusions, ISIJ Int., 46(2006), No. 3, p. 450. doi: 10.2355/isijinternational.46.450
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(666) PDF Downloads(94) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return