Zhuoran Zeng, Mingzhe Bian, Shiwei Xu, Weineng Tang, Chris Davies, Nick Birbilis, and Jianfeng Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1388-1395. https://doi.org/10.1007/s12613-021-2365-4
Cite this article as:
Zhuoran Zeng, Mingzhe Bian, Shiwei Xu, Weineng Tang, Chris Davies, Nick Birbilis, and Jianfeng Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1388-1395. https://doi.org/10.1007/s12613-021-2365-4
Research Article

Optimisation of alloy composition for highly-formable magnesium sheet

+ Author Affiliations
  • The effectiveness of Ca or Gd addition on ductility and formability of Mg–Zn–Zr based dilute alloys in deep drawing has not been systematically compared previously. In this study, formable Mg–Zn–Gd–Zr and Mg–Zn–Ca–Zr sheet alloys are produced by hot rolling. These sheets have similarly weakened basal texture, but the sheet of the Mg–Zn–Gd–Zr alloys has higher ductility and formability than that of Mg–Zn–Ca–Zr alloys. The combined addition of 0.2wt% Ca and 0.4wt% Gd to the Mg–1Zn–0.5Zr (wt%) alloy leads to a Mg–1Zn–0.4Gd–0.2Ca–0.5Zr alloy that has even better ductility, and its formability during deep drawing is comparable to the benchmark Al6016 sheet. An increase in Ca content from 0.2wt% to 0.5wt% leads to decreased sheet ductility and formability, predominantly due to grain boundary embrittlement.

  • loading
  • [1]
    W.J. Joost and P.E. Krajewski, Towards magnesium alloys for high-volume automotive applications, Scripta Mater., 128(2017), p. 107. doi: 10.1016/j.scriptamat.2016.07.035
    [2]
    T.M. Pollock, Weight loss with magnesium alloys, Science, 328(2010), No. 5981, p. 986. doi: 10.1126/science.1182848
    [3]
    S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets, Acta Mater., 58(2010), No. 2, p. 592. doi: 10.1016/j.actamat.2009.09.038
    [4]
    N. Stanford and M. Barnett, Effect of composition on the texture and deformation behaviour of wrought Mg alloys, Scripta Mater., 58(2008), No. 3, p. 179. doi: 10.1016/j.scriptamat.2007.09.054
    [5]
    Y. Chino and M. Mabuchi, Enhanced stretch formability of Mg–Al–Zn alloy sheets rolled at high temperature (723 K), Scripta Mater., 60(2009), No. 6, p. 447. doi: 10.1016/j.scriptamat.2008.11.029
    [6]
    B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here? Scripta Mater., 84-85(2014), p. 1. doi: 10.1016/j.scriptamat.2014.04.017
    [7]
    Y. Chino, K. Sassa, and M. Mabuchi, Tensile properties and stretch formability of Mg–1.5 mass%–0.2 mass%Ce sheet rolled at 723 K, Mater. Trans., 49(2008), No. 7, p. 1710. doi: 10.2320/matertrans.MEP2008136
    [8]
    K.F. Zhang, D.L. Yin, and D.Z. Wu, Formability of AZ31 magnesium alloy sheets at warm working conditions, Int. J. Mach. Tools Manuf., 46(2006), No. 11, p. 1276. doi: 10.1016/j.ijmachtools.2006.01.014
    [9]
    K.I. Mori and H. Tsuji, Cold deep drawing of commercial magnesium alloy sheets, J. Jpn. Soc. Technol. Plast., 48(2007), No. 552, p. 41. doi: 10.9773/sosei.48.41
    [10]
    G. Dieter, Mechanical Metallurgy, 3rd ed., McGrow-Hill, London, 1986, p. 672.
    [11]
    I. Polmear, D. StJohn, J.F. Nie, and M. Qian, Magnesium alloys, [in] Light Alloys: Metallurgy of the Light Metals, 5th ed., Butterworth-Heinemann, Oxford, 2017, p. 287.
    [12]
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Mater., 63(2010), No. 7, p. 725. doi: 10.1016/j.scriptamat.2009.12.033
    [13]
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Texture evolution during static recrystallization of cold-rolled magnesium alloys, Acta Mater., 105(2016), p. 479. doi: 10.1016/j.actamat.2015.12.045
    [14]
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater., 55(2007), No. 6, p. 2101. doi: 10.1016/j.actamat.2006.11.013
    [15]
    I. Basu and T. Al-Samman, Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium, Acta Mater., 67(2014), p. 116. doi: 10.1016/j.actamat.2013.12.015
    [16]
    Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X.S. Huang, K. Suzuki, and M. Mabuchi, Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys, Mater. Trans., 52(2011), No. 7, p. 1477. doi: 10.2320/matertrans.M2011048
    [17]
    J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., 61(2013), No. 3, p. 818. doi: 10.1016/j.actamat.2012.10.044
    [18]
    J.F. Nie, K.S. Shin, and Z.R. Zeng, Microstructure, deformation, and property of wrought magnesium alloys, Metall. Mater. Trans. A, 51(2020), No. 12, p. 6045. doi: 10.1007/s11661-020-05974-z
    [19]
    M.Z. Bian, Z.R. Zeng, S.W. Xu, W.N. Tang, C.H.J. Davies, N. Birbilis, and J.F. Nie, Enhanced tensile properties of Mg sheets by a unique thermomechanical processing method, Metall. Mater. Trans. A, 47(2016), No. 12, p. 5709. doi: 10.1007/s11661-016-3777-z
    [20]
    Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet, Mater. Sci. Eng. A, 674(2016), p. 459. doi: 10.1016/j.msea.2016.07.049
    [21]
    F. Vollertsen, Metal forming: Microparts, [in] K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds., Encyclopedia of Materials: Science and Technology, 2nd ed., Elsevier, Oxford, 2001, p. 5424.
    [22]
    C.F. Gu, Micro-Forming and Grain Refinement: Effects of Microstructural and Geometric Scale on Metal Formability [Dissertation], Monash University, 2010.
    [23]
    T. Nakata, C. Xu, Y. Uehara, T.T. Sasaki, and S. Kamado, Origin of texture weakening in a rolled ZEX4101 alloy sheet and its effect on room temperature formability and tensile property, J. Alloys Compd., 782(2019), p. 304. doi: 10.1016/j.jallcom.2018.12.194
    [24]
    M.Z. Bian, Z.R. Zeng, S.W. Xu, S.M. Zhu, Y.M. Zhu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Improving formability of Mg–Ca–Zr sheet alloy by microalloying of Zn, Adv. Eng. Mater., 18(2016), No. 10, p. 1763. doi: 10.1002/adem.201600293
    [25]
    T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys, Acta Mater., 99(2015), p. 176. doi: 10.1016/j.actamat.2015.06.060
    [26]
    J.R. TerBush, N. Stanford, J.F. Nie, and M.R. Barnett, Na partitioning during thermomechanical processing of an Mg–Sn–Zn–Na alloy, Metall. Mater. Trans. A, 44(2013), No. 11, p. 5216. doi: 10.1007/s11661-013-1872-y
    [27]
    J.L. Li, X.X. Wang, N. Zhang, D. Wu, and R.S. Chen, Ductility drop of the solutionized Mg–Gd–Y–Zr alloy during tensile deformation at 350 °C, J. Alloys Compd., 714(2017), p. 104. doi: 10.1016/j.jallcom.2017.04.225
    [28]
    T. Hase, T. Ohtagaki, M. Yamaguchi, N. Ikeo, and T. Mukai, Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg–Ca alloys, Acta Mater., 104(2016), p. 283. doi: 10.1016/j.actamat.2015.11.045
    [29]
    F.J. Humphreys and M. Hatherly, Recrystallisation and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
    [30]
    Z.R. Zeng, M.R. Zhou, P. Lynch, F. Mompiou, Q.F. Gu, M. Esmaily, Y.M. Yan, Y. Qiu, S.W. Xu, H. Fujii, C. Davies, J.F. Nie, and N. Birbilis, Deformation modes during room temperature tension of fine-grained pure magnesium, Acta Mater., 206(2021), art. No. 116648. doi: 10.1016/j.actamat.2021.116648
    [31]
    H. Somekawa, D.A. Basha, and A. Singh, Deformation behavior at room temperature ranges of fine-grained Mg–Mn system alloys, Mater. Sci. Eng. A, 766(2019), art. No. 138384. doi: 10.1016/j.msea.2019.138384
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1643) PDF Downloads(70) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return