Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad Arif Mughal, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2371-6
Cite this article as:
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad Arif Mughal, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2371-6
Research Article

Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing

+ Author Affiliations
  • Received: 8 August 2021Revised: 26 October 2021Accepted: 1 November 2021Available online: 4 November 2021
  • Powder hot isostatic pressing (HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thin-walled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder HIPed titanium alloys. Therefore, TA15 powder was prepared into alloy by HIP approach, which are used to explore the microstructure characteristics at different HIP temperatures, and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a "basket-like structure" when the HIP temperature below 950°C, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950°C, the microstructure gradually transformed into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910°C specimen to 861 MPa and 10% for the 970°C specimen. The corresponding tensile fracture mode changed from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage. The fracture toughness of the specimens increased from 82.64 MPa√m for the 910°C specimen to 140.18 MPa√m for the 970°C specimen. Specimens below 950°C tend to form holes due to the prior particle boundaries (PPBs), which is not conducive to toughening. Specimens above 950°C have high fracture toughness due to the crack deflection, crack branching and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(124) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return