Siyuan Jin, Xiaochun Ma, Ruizhi Wu, Tingqu Li, Jiaxiu Wang, Boris L Krit, Legan Hou, Jinghuai Zhang, and Guixiang Wang, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1453-1463. https://doi.org/10.1007/s12613-021-2377-0
Cite this article as:
Siyuan Jin, Xiaochun Ma, Ruizhi Wu, Tingqu Li, Jiaxiu Wang, Boris L Krit, Legan Hou, Jinghuai Zhang, and Guixiang Wang, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1453-1463. https://doi.org/10.1007/s12613-021-2377-0
Research Article

Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy

+ Author Affiliations
  • Corresponding authors:

    Ruizhi Wu    E-mail: rzwu@hrbeu.edu.cn

    Tingqu Li    E-mail: ltq2000@163.com

  • Received: 3 September 2021Revised: 3 November 2021Accepted: 8 November 2021Available online: 9 November 2021
  • Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg–9Li–3Al (wt%, LA93) alloy. The influences of carbonate on the morphology, structure, and phase composition of the coating were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. The corrosion resistance of the coating was evaluated by electrochemical experiment, hydrogen evolution, and immersion test. The results showed that the addition of carbonate resulted in a denser coating with increased hardness, and the corrosion-resistant Li2CO3 phase was formed. Electrochemical experiments showed that compared with the coating without carbonate, the corrosion potential of the carbonate coating positively shifted (24 mV), and the corrosion current density was reduced by approximately an order of magnitude. The coating with carbonate addition possessed a high corrosion resistance and long-term protection capability.

  • loading
  • [1]
    J.H. Wang, L. Xu, R.Z. Wu, D. An, Z. Wei, J.X. Wang, J. Feng, J.H. Zhang, L.G. Hou, and M.D. Liu, Simultaneous achievement of high electromagnetic shielding effectiveness (X-band) and strength in Mg–Li–Zn–Gd/MWCNTs composite, J. Alloys Compd., 882(2021), art. No. 160524. doi: 10.1016/j.jallcom.2021.160524
    [2]
    A. Mehrabi, R. Mahmudi, and H. Miura, Superplasticity in a multi-directionally forged Mg–Li–Zn alloy, Mater. Sci. Eng. A, 765(2019), art. No. 138274. doi: 10.1016/j.msea.2019.138274
    [3]
    S.Y. Jin, H.Y. Liu, R.Z. Wu, F. Zhong, L.G. Hou, and J.H. Zhang, Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy, Mater. Sci. Eng. A, 788(2020), art. No. 139611. doi: 10.1016/j.msea.2020.139611
    [4]
    J.H. Wang, L. Xu, R.Z. Wu, J. Feng, J.H. Zhang, L.G. Hou, and M.L. Zhang, Enhanced electromagnetic interference shielding in a duplex-phase Mg–9Li–3Al–1Zn alloy processed by accumulative roll bonding, Acta Metall. Sinica Engl. Lett., 33(2020), No. 4, p. 490. doi: 10.1007/s40195-020-01017-z
    [5]
    Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang, and J.F. Zhong, Effects of alloying elements on the microstructure and corrosion behavior of Mg–Li–Al–Y alloys, J. Alloys Compd., 834(2020), art. No. 154344. doi: 10.1016/j.jallcom.2020.154344
    [6]
    D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
    [7]
    L.Y. Wang, X.M. Xiao, E.Y. Liu, S.R. Yu, X.L. Yin, J. Wang, G. Zhu, Q. Li, and J. Li, Fabrication of superhydrophobic needle-like Ca–P coating with anti-fouling and anti-corrosion properties on AZ31 magnesium alloy, Colloids Surf. A, 620(2021), art. No. 126568. doi: 10.1016/j.colsurfa.2021.126568
    [8]
    B.T. da Fonseca, E. D’Elia, J.M. Siqueira Júnior, S.M. Oliveira, K.L. Castro, and E.S. Ribeiro, Study of the characteristics and properties of the SiO2/TiO2/Nb2O5 material obtained by the sol–gel process, Sci. Rep., 11(2021), No. 1, art. No. 1106. doi: 10.1038/s41598-020-80310-4
    [9]
    C.A. Huang, C.K. Lin, and Y.H. Yeh, The corrosion and wear resistances of magnesium alloy (LZ91) electroplated with copper and followed by 1 μm-thick chromium deposits, Thin Solid Films, 519(2011), No. 15, p. 4774. doi: 10.1016/j.tsf.2011.01.032
    [10]
    J.M. Zhang, K. Wang, X. Duan, Y. Zhang, H. Cai, and Z.H. Wang, Effect of hydrothermal treatment time on microstructure and corrosion behavior of micro-arc oxidation/layered double hydroxide composite coatings on LA103Z Mg–Li alloy in 3.5 wt.% NaCl solution, J. Mater. Eng. Perform., 29(2020), No. 6, p. 4032. doi: 10.1007/s11665-020-04906-7
    [11]
    B.Y. Qian, W. Miao, M. Qiu, F. Gao, D.H. Hu, J.F. Sun, R.Z. Wu, B. Krit, and S. Betsofen, Influence of voltage on the corrosion and wear resistance of micro-arc oxidation coating on Mg–8Li–2Ca alloy, Acta Metall. Sinica Engl. Lett., 32(2019), No. 2, p. 194. doi: 10.1007/s40195-018-0845-y
    [12]
    A. Apelfeld, B. Krit, V. Ludin, N. Morozova, B. Vladimirov, and R.Z. Wu, The characterization of plasma electrolytic oxidation coatings on AZ41 magnesium alloy, Surf. Coat. Technol., 322(2017), p. 127. doi: 10.1016/j.surfcoat.2017.05.048
    [13]
    L.Y. An, Y. Ma, Y.P. Liu, L. Sun, S. Wang, and Z.Y. Wang, Effects of additives, voltage and their interactions on PEO coatings formed on magnesium alloys, Surf. Coat. Technol., 354(2018), p. 226. doi: 10.1016/j.surfcoat.2018.09.026
    [14]
    Z.J. Li, Q.H. Ren, X.X. Wang, Q. Kuang, D.B. Ji, R.X. Yuan, and X.Y. Jing, Effect of phosphate additive on the morphology and anti-corrosion performance of plasma electrolytic oxidation coatings on magnesium–lithium alloy, Corros. Sci., 157(2019), p. 295. doi: 10.1016/j.corsci.2019.06.005
    [15]
    M. Mohedano, P. Pérez, E. Matykina, B. Pillado, G. Garcés, and R. Arrabal, PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy, Surf. Coat. Technol., 383(2020), art. No. 125253. doi: 10.1016/j.surfcoat.2019.125253
    [16]
    Z.J. Li, Y. Yuan, P.P. Sun, and X.Y. Jing, Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection, ACS Appl. Mater. Interfaces, 3(2011), No. 9, p. 3682. doi: 10.1021/am200863s
    [17]
    X.B. Wang, X.B. Tian, C.Z. Gong, and S.Q. Yang, Effect of Na2CO3 on energy consumption of micro-arc oxidation of magnesium alloy, Rare Met. Mater. Eng., 41(2012), No. S1, p. 187.
    [18]
    C.Q. Li, Z.P. Tong, Y.B. He, H.P. Huang, Y. Dong, and P. Zhang, Comparison on corrosion resistance and surface film of pure Mg and Mg–14Li alloy, Trans. Nonferrous Met. Soc. China, 30(2020), No. 9, p. 2413. doi: 10.1016/S1003-6326(20)65388-2
    [19]
    S. Tang, T.Z. Xin, W.Q. Xu, D. Miskovic, C.Q. Li, N. Birbilis, and M. Ferry, The composition-dependent oxidation film formation in Mg–Li–Al alloys, Corros. Sci., 187(2021), art. No. 109508. doi: 10.1016/j.corsci.2021.109508
    [20]
    W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy, Nat. Mater., 14(2015), No. 12, p. 1229. doi: 10.1038/nmat4435
    [21]
    Y. Yan, Y. Qiu, O. Gharbi, N. Birbilis, and P.N.H. Nakashima, Characterisation of Li in the surface film of a corrosion resistant Mg–Li(–Al–Y–Zr) alloy, Appl. Surf. Sci., 494(2019), p. 1066. doi: 10.1016/j.apsusc.2019.07.167
    [22]
    C.Q. Li, Y.B. He, and H.P. Huang, Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 569. doi: 10.1016/j.jma.2020.02.022
    [23]
    J.J. Yang, X.P. Lu, C. Blawert, S.C. Di, and M.L. Zheludkevich, Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation, Surf. Coat. Technol., 319(2017), p. 359. doi: 10.1016/j.surfcoat.2017.04.001
    [24]
    H.P. Duan, K.Q. Du, C.W. Yan, and F.H. Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta, 51(2006), No. 14, p. 2898. doi: 10.1016/j.electacta.2005.08.026
    [25]
    B. Yin, Z.J. Peng, J. Liang, K.J. Jin, S.Y. Zhu, J. Yang, and Z.H. Qiao, Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation, Tribol. Int., 97(2016), p. 97. doi: 10.1016/j.triboint.2016.01.020
    [26]
    J. da Silva Rodrigues, L. Marasca Antonini, A.A. da Cunha Bastos, J. Zhou, and C. de Fraga Malfatti, Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation, Surf. Coat. Technol., 410(2021), art. No. 126983. doi: 10.1016/j.surfcoat.2021.126983
    [27]
    E. Wierzbicka, B. Vaghefinazari, S.V. Lamaka, M.L. Zheludkevich, M. Mohedano, L. Moreno, P. Visser, A. Rodriguez, J. Velasco, R. Arrabal, and E. Matykina, Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy, Corros. Sci., 180(2021), art. No. 109189. doi: 10.1016/j.corsci.2020.109189
    [28]
    Q.X. Xia, D.J. Zhang, D.Q. Li, Z.H. Jiang, and Z.P. Yao, Preparation of the plasma electrolytic oxidation coating on Mg–Li alloy and its thermal control performance, Surf. Coat. Technol., 369(2019), p. 252. doi: 10.1016/j.surfcoat.2019.04.073
    [29]
    L. Liu, S.R. Yu, E.Y. Liu, Y. Zhao, B.Y. Wang, Y.F. Niu, K. Zhang, G. Zhu, and Q. Li, Preparation and characterization of micro-arc oxidation coating on hollow glass microspheres/Mg alloy degradable composite, Mater. Chem. Phys., 271(2021), art. No. 124935. doi: 10.1016/j.matchemphys.2021.124935
    [30]
    X.B. Wang, X.B. Tian, C.Z. Gong, and S.Q. Yang, Na2CO3-induced gas evolution reaction and morphology modulation on magnesium alloy during micro-arc oxidation, J. Inorg. Mater., 26(2011), No. 7, p. 721. doi: 10.3724/SP.J.1077.2011.00721
    [31]
    C.Y. Chang, S.Y. Yang, and J.C.C. Chan, Solubility product of amorphous magnesium carbonate, J. Chin. Chem. Soc., 68(2021), No. 3, p. 476. doi: 10.1002/jccs.202000527
    [32]
    L. Wang, T. Shinohara, and B.P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution, Appl. Surf. Sci., 256(2010), No. 20, p. 5807. doi: 10.1016/j.apsusc.2010.02.058
    [33]
    K. Qian, W.Z. Li, X.P. Lu, X.X. Han, Y. Jin, T. Zhang, and F.H. Wang, Effect of phosphate-based sealing treatment on the corrosion performance of a PEO coated AZ91D Mg alloy, J. Magnes. Alloys, 8(2020), No. 4, p. 1328. doi: 10.1016/j.jma.2020.05.014
    [34]
    A. Pardo, S. Merino, M.C. Merino, I. Barroso, M. Mohedano, R. Arrabal, and F. Viejo, Corrosion behaviour of silicon–carbide-particle reinforced AZ92 magnesium alloy, Corros. Sci., 51(2009), No. 4, p. 841. doi: 10.1016/j.corsci.2009.01.024
    [35]
    H.B. Yao, Y. Li, and A.T.S. Wee, Passivity behavior of melt-spun Mg–Y Alloys, Electrochim. Acta, 48(2003), No. 28, p. 4197. doi: 10.1016/S0013-4686(03)00605-4
    [36]
    S.J. Lee and L.H.T. Do, Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy, Surf. Coat. Technol., 307(2016), p. 781. doi: 10.1016/j.surfcoat.2016.10.008
    [37]
    X.M. Zhang, G.S. Wu, X. Peng, L.M. Li, H.Q. Feng, B. Gao, K.F. Huo, and P.K. Chu, Mitigation of corrosion on magnesium alloy by predesigned surface corrosion, Sci. Rep., 5(2015), art. No. 17399. doi: 10.1038/srep17399
    [38]
    A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy, Surf. Coat. Technol., 177-178(2004), p. 779. doi: 10.1016/j.surfcoat.2003.06.020
    [39]
    E. Mortezanejad, M. Atapour, H. Salimijazi, A. Alhaji, and A. Hakimizad, Wear and corrosion behavior of aluminate- and phosphate-based plasma electrolytic oxidation coatings with polytetrafluoroethylene nanoparticles on AZ80 Mg alloy, J. Mater. Eng. Perform., 30(2021), No. 6, p. 4030. doi: 10.1007/s11665-021-05803-3
    [40]
    L. Prince, M.A. Rousseau, X. Noirfalise, L. Dangreau, L.B. Coelho, and M.G. Olivier, Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution, Corros. Sci., 179(2021), art. No. 109131. doi: 10.1016/j.corsci.2020.109131
    [41]
    L.F. Hou, M. Raveggi, X.B. Chen, W.Q. Xu, K.J. Laws, Y.H. Wei, M. Ferry, and N. Birbilis, Investigating the passivity and dissolution of a corrosion resistant Mg–33at.%Li alloy in aqueous chloride using online ICP-MS, J. Electrochem. Soc., 163(2016), No. 6, p. C324. doi: 10.1149/2.0871606jes
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2885) PDF Downloads(64) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return