Cite this article as: |
Yanbiao Chen, Wenguo Liu, and Haibin Zuo, Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1862-1872. https://doi.org/10.1007/s12613-021-2385-0 |
[1] |
Y. Jégourel, The global iron ore market: From cyclical developments to potential structural changes, Extr. Ind. Soc., 7(2020), No. 3, p. 1128. doi: 10.1016/j.exis.2020.05.015
|
[2] |
X.Q. Hao, H.Z. An, X.Q. Sun, and W.Q. Zhong, The import competition relationship and intensity in the international iron ore trade: From network perspective, Resour. Policy, 57(2018), p. 45. doi: 10.1016/j.resourpol.2018.01.005
|
[3] |
J.X. Wu, J. Yang, L.W. Ma, Z. Li, and X.S. Shen, A system analysis of the development strategy of iron ore in China, Resour. Policy, 48(2016), p. 32. doi: 10.1016/j.resourpol.2016.01.010
|
[4] |
H. Baioumy, M. Omran, and T. Fabritius, Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt, Ore Geol. Rev., 80(2017), p. 185. doi: 10.1016/j.oregeorev.2016.06.030
|
[5] |
J. Wu, Z.J. Wen, and M.J. Cen, Development of technologies for high phosphorus oolitic hematite utilization, Steel Res. Int., 82(2011), No. 5, p. 494. doi: 10.1002/srin.201100040
|
[6] |
S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908. doi: 10.1007/s12613-021-2329-8
|
[7] |
M. Altiner, Upgrading of iron ores using microwave assisted magnetic separation followed by dephosphorization leaching, Can. Metall. Q., 58(2019), No. 4, p. 445. doi: 10.1080/00084433.2019.1619063
|
[8] |
W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
|
[9] |
Y.Y. Zhang, Q.G. Xue, H.B. Zuo, C. Cheng, G. Wang, F. Han, and J.S. Wang, Intermittent microscopic observation of structure change and mineral reactions of high phosphorus oolitic hematite in carbothermic reduction, ISIJ Int., 57(2017), No. 7, p. 1149. doi: 10.2355/isijinternational.ISIJINT-2016-690
|
[10] |
E. Matinde and M. Hino, Dephosphorization treatment of high phosphorus iron ore by pre-reduction, air jet milling and screening methods, ISIJ Int., 51(2011), No. 4, p. 544. doi: 10.2355/isijinternational.51.544
|
[11] |
L. Zhang, R. Machiela, P. Das, M.M. Zhang, and T. Eisele, Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature, Hydrometallurgy, 184(2019), p. 95. doi: 10.1016/j.hydromet.2018.12.023
|
[12] |
S.B. Kanungo and B.R. Sant, Dephosphorization of phosphorus-rich manganese ores by selective leaching with dilute hydrochloric acid, Int. J. Miner. Process., 8(1981), No. 4, p. 359. doi: 10.1016/0301-7516(81)90022-3
|
[13] |
M.J. Fisher-White, R.R. Lovel, and G.J. Sparrow, Phosphorus removal from goethitic iron ore with a low temperature heat treatment and a caustic leach, ISIJ Int., 52(2012), No. 5, p. 797. doi: 10.2355/isijinternational.52.797
|
[14] |
C.N. Anyakwo and O.W. Obot, Phosphorus removal capability of aspergillus terreus and bacillus subtilis from Nigeria’s agbaja iron ore, J. Miner. Mater. Charact. Eng., 9(2010), No. 12, p. 1131. doi: 10.4236/jmmce.2010.912082
|
[15] |
J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
|
[16] |
K. Gi, F. Sano, T. Homma, J. Oda, A. Hayashi, and K. Akimoto, An analysis on global energy-related CO2 emission reduction and energy systems by current climate and energy policies and the nationally determined contributions, J. Jpn. Inst. Energy, 97(2018), No. 6, p. 135. doi: 10.3775/jie.97.135
|
[17] |
V. Shatokha, E. Matukhno, K. Belokon, and G. Shmatkov, Potential means to reduce CO2 emissions of iron and steel industry in Ukraine using best available technologies, J. Sustain. Metall., 6(2020), No. 3, p. 451. doi: 10.1007/s40831-020-00289-0
|
[18] |
D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
|
[19] |
N. Oyama, Y. Iwami, T. Yamamoto, S. Machida, T. Higuchi, H. Sato, M. Sato, K. Takeda, Y. Watanabe, M. Shimizu, and K. Nishioka, Development of secondary-fuel injection technology for energy reduction in the iron ore sintering process, ISIJ Int., 51(2011), No. 6, p. 913. doi: 10.2355/isijinternational.51.913
|
[20] |
M.N. Abu Tahari, F. Salleh, T.S. Tengku Saharuddin, N. Dzakaria, A. Samsuri, M.W. Mohamed Hisham, and M.A. Yarmo, Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature, Int. J. Hydrogen Energy, 44(2019), No. 37, p. 20751. doi: 10.1016/j.ijhydene.2018.09.186
|
[21] |
M. Mizutani, T. Nishimura, T. Orimoto, K. Higuchi, S. Nomura, K. Saito, and E. Kasai, Influence of reducing gas composition on disintegration behavior of iron ore agglomerates, ISIJ Int., 57(2017), No. 9, p. 1499. doi: 10.2355/isijinternational.ISIJINT-2017-074
|
[22] |
E.A. Mousa, A. Babich, and D. Senk, Enhancement of iron ore sinter reducibility through coke oven gas injection into the modern blast furnace, ISIJ Int., 53(2013), No. 8, p. 1372. doi: 10.2355/isijinternational.53.1372
|
[23] |
W. Gleason, An introduction to phosphorus: History, production, and application, JOM, 59(2007), No. 6, p. 17. doi: 10.1007/s11837-007-0071-y
|
[24] |
M.A.M. Alzaky and D.X. Li, Sulfate of potash and yellow phosphorus to simultaneously remove SO2–NO and obtain a complete fertilizer, Atmos. Pollut. Res., 12(2021), No. 2, p. 147. doi: 10.1016/j.apr.2020.10.017
|
[25] |
W. Zhang, H.W Xing, T.L. Tian, and H. Wang, Theory and Practice of Gasificating Dephosphorization in Sintering Process, Metallurgical Industry Press, Beijing, 2016.
|
[26] |
Y.B. Chen and H.B. Zuo, Gasification behavior of phosphorus during pre-reduction sintering of medium-high phosphorus iron ore, ISIJ Int., 61(2021), No. 5, p. 1459. doi: 10.2355/isijinternational.ISIJINT-2020-564
|
[27] |
S.K. El-Rahaiby and Y.K. Rao, The kinetics of reduction of iron oxides at moderate temperatures, Metall. Trans. B, 10(1979), No. 2, p. 257. doi: 10.1007/BF02652470
|
[28] |
H.S. Chen, Z. Zheng, Z.W. Chen, W.Z. Yu, and J.R. Yue, Multistep reduction kinetics of fine iron ore with carbon monoxide in a micro fluidized bed reaction analyzer, Metall. Mater. Trans. B, 48(2017), No. 2, p. 841. doi: 10.1007/s11663-016-0883-7
|
[29] |
J.G. Santos, M.M. Conceiçăo, M.F. Trindade, A.S. Araújo, V.J. Fernandes Jr, and A.G. Souza, Kinetic study of dipivaloylmethane by ozawa method, J. Therm. Anal. Calorim., 75(2004), No. 2, p. 591. doi: 10.1023/B:JTAN.0000027150.30994.48
|
[30] |
T. P. Bagchi and P.K. Sen, Kinetics of densification of powder compacts during the initial stage of sintering with constant rates of heating. A thermal analysis approach. Part I. Theoretical considerations, Thermochim. Acta, 56(1982), No. 3, p. 261. doi: 10.1016/0040-6031(82)87034-2
|
[31] |
T. P. Bagchi and P.K. Sen, Kinetics of densification of powder compacts during the initial stage of sintering with constant rates of heating. A thermal analysis approach. Part III. Copper powder compacts, Thermochim. Acta, 61(1983), No. 1-2, p. 73. doi: 10.1016/0040-6031(83)80304-9
|
[32] |
Q.H. Wu, J.Q. Li, X.D. Lv, B. Xv, C.Y. Chen, and R. Huang, Reaction mechanism of low-grade phosphate ore during vacuum carbothermal reduction, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1484. doi: 10.1007/s11663-021-02117-6
|
[33] |
P.M. Sargent and M.F. Ashby, Deformation mechanism maps for alkali metals, Scripta Metall., 18(1984), No. 2, p. 145. doi: 10.1016/0036-9748(84)90494-0
|
[34] |
Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
|
[35] |
H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
|
[36] |
D.Q. Zhu, S.W. Li, J. Pan, C.C. Yang, and B.J. Shi, Migration and distributions of zinc, lead and arsenic within sinter bed during updraft pre-reductive sintering of iron-bearing wastes, Powder Technol., 342(2019), p. 864. doi: 10.1016/j.powtec.2018.10.050
|