Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li,  and Peng Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2087-2105. https://doi.org/10.1007/s12613-021-2408-x
Cite this article as:
Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li,  and Peng Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2087-2105. https://doi.org/10.1007/s12613-021-2408-x
Invited Review

Review on coal-based reduction and magnetic separation for refractory iron-bearing resources

+ Author Affiliations
  • Corresponding author:

    Yongsheng Sun    E-mail: yongshengsun@mail.neu.edu.cn

  • Received: 22 September 2021Revised: 28 December 2021Accepted: 28 December 2021Available online: 30 December 2021
  • The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed. Currently, the development and beneficiation of refractory iron-bearing resources have attracted increasing attention. However, the effect of iron recovery by traditional beneficiation methods is unacceptable. Coal-based reduction followed by magnetic separation is proposed, which adopts coal as the reductant to reduce iron oxides to metallic iron below the melting temperature. The metallic iron particles aggregate and grow, and the particle size continuously increases to be suitable for magnetic separation. The optimization and application of coal-based reduction have been abundantly researched. A detailed literature study on coal-based reduction is performed from the perspectives of thermodynamics, reduction kinetics, growth of metallic iron particles, additives, and application. The coal-based reduction industrial equipment can be developed based on the existing pyrometallurgical equipments, rotary hearth furnace and rotary kiln, which are introduced briefly. However, coal-based reduction currently mainly adopts coal as a reductant and fuel, which may result in high levels of carbon dioxide emissions, energy consumption, and pollution. Technological innovation aiming at decreasing carbon dioxide emissions is a new trend of green and sustainable development of the steel industry. Therefore, the substitution of coal with clean energy (hydrogen, biomass, etc.) for iron oxide reduction shows promise in the future.
  • loading
  • [1]
    J.X. Wu, J. Yang, L.W. Ma, Z. Li, and X.S. Shen, A system analysis of the development strategy of iron ore in China, Resour. Policy, 48(2016), p. 32. doi: 10.1016/j.resourpol.2016.01.010
    [2]
    Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Effect of thermal oxidation pretreatment on the magnetization roasting and separation of refractory iron ore, Miner. Process. Extr. Metall. Rev., 43(2022), No. 2, p. 182. doi: 10.1080/08827508.2020.1837126
    [3]
    X.L. Zhang, X.T. Gu, Y.X. Han, N. Parra-Álvarez, V. Claremboux, and S. K. Kawatra, Flotation of iron ores: A review, Miner. Process. Extr. Metall. Rev., 42(2021), No. 3, p. 184. doi: 10.1080/08827508.2019.1689494
    [4]
    B. Anameric and S.K. Kawatra, Properties and features of direct reduced iron, Miner. Process. Extr. Metall. Rev., 28(2007), No. 1, p. 59. doi: 10.1080/08827500600835576
    [5]
    D. Fernández-González, Í. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L. Verdeja, Iron ore sintering: Raw materials and granulation, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 36. doi: 10.1080/08827508.2016.1244059
    [6]
    X.L. Zhang, Y.X. Han, Y.S. Sun, Y. Lv, Y.J. Li and Z.D. Tang, An novel method for iron recovery from iron ore tailings with pre-concentration followed by magnetization roasting and magnetic separation, Miner. Process. Extr. Metall. Rev., 41(2020), No. 2, p. 117. doi: 10.1080/08827508.2019.1604522
    [7]
    S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
    [8]
    U. Srivastava and S.K. Kawatra, Strategies for processing low-grade iron ore minerals, Miner. Process. Extr. Metall. Rev., 30(2009), No. 4, p. 361. doi: 10.1080/08827500903185208
    [9]
    Q. Zhang, Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Thermal decomposition kinetics of siderite ore during magnetization roasting, Min. Metall. Explor., 38(2021), No. 3, p. 1497. doi: 10.1007/s42461-021-00417-8
    [10]
    R.A. Williams, Processing problematic ores, Miner. Eng., 6(1993), No. 8-10, p. 809. doi: 10.1016/0892-6875(93)90055-R
    [11]
    X. Wang, B. Zhao, J. Liu, Y.M. Zhu, and Y.X. Han, Dithiouracil, a highly efficient depressant for the selective separation of molybdenite from chalcopyrite by flotation: Applications and mechanism, Miner. Eng., 175(2022), art. No. 107287. doi: 10.1016/j.mineng.2021.107287
    [12]
    S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting–magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449. doi: 10.1007/s12613-020-1992-5
    [13]
    J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349. doi: 10.1080/08827508.2019.1634565
    [14]
    K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng., 126(2018), p. 89. doi: 10.1016/j.mineng.2018.06.018
    [15]
    X.D. Xing, Y.L. Du, J.L. Zheng, Y.F. Chen, S. Ren, and J.T. Ju, Experimental study on strengthening carbothermic reduction of vanadium-titanium-magnetite by adding CaF2, Minerals, 10(2020), No. 3, art. No. 219. doi: 10.3390/min10030219
    [16]
    P. Gao, G.F. Li, X.T. Gu, and Y.X. Han, Reduction kinetics and microscopic properties transformation of boron-bearing iron concentrate-carbon-mixed pellets, Miner. Process. Extr. Metall. Rev., 41(2020), No. 3, p. 162. doi: 10.1080/08827508.2019.1598403
    [17]
    S. Yuan, W.T. Zhou, Y.J. Li, and Y.X. Han, Efficient enrichment of nickel and iron in laterite nickel ore by deep reduction and magnetic separation, Trans. Nonferrous Met. Soc. China, 30(2020), No. 3, p. 812. doi: 10.1016/S1003-6326(20)65256-6
    [18]
    Y.J. Li, Y.X. Han, Y.M. Zhu, and J. Liu, Deep reduction tests of antelope iron ore in Linjiang area, J. Northeast. Univ. Nat. Sci., 33(2012), No. 1, p. 137.
    [19]
    Y.J. Li, Y.S. Sun, Y.X. Han and P. Gao, Coal-based reduction mechanism of low-grade laterite ore, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3428. doi: 10.1016/S1003-6326(13)62884-8
    [20]
    Y.S. Sun, P. Gao, Y.X. Han, and D.Z. Ren, Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore, Ind. Eng. Chem. Res., 52(2013), No. 6, p. 2323. doi: 10.1021/ie303233k
    [21]
    Y.S. Sun, Y.X. Han, P. Gao, and G.F. Li, Investigation of kinetics of coal based reduction of oolitic iron ore, Ironmaking Steelmaking, 41(2014), No. 10, p. 763. doi: 10.1179/1743281214Y.0000000196
    [22]
    Y.S. Sun, Y.X. Han, P. Gao, Z.H. Wang, and D.Z. Ren, Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 411. doi: 10.1007/s12613-013-0744-1
    [23]
    Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao, and G.F. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM, 70(2018), No. 2, p. 144. doi: 10.1007/s11837-017-2637-7
    [24]
    W. Yu, T.C. Sun, Q. Cui, C.Y. Xu, and J. Kou, Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore, ISIJ Int., 55(2015), No. 3, p. 536. doi: 10.2355/isijinternational.55.536
    [25]
    Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Growth kinetics of metallic iron phase in coal-based reduction of oolitic iron ore, ISIJ Int., 56(2016), No. 10, p. 1697. doi: 10.2355/isijinternational.ISIJINT-2016-253
    [26]
    Y.S. Sun, Y.X. Han, P. Gao, and J.W. Yu, Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 249. doi: 10.1080/08827508.2014.955611
    [27]
    Y.S. Sun, Y.X. Han, Y.F. Li, and Y.J. Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123. doi: 10.1007/s12613-017-1386-5
    [28]
    Y.S. Sun, W.T. Zhou, Y.X. Han, and Y.J. Li, Effect of different additives on reaction characteristics of fluorapatite during coal-based reduction of iron ore, Metals, 9(2019), No. 9, art. No. 923. doi: 10.3390/met9090923
    [29]
    K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035. doi: 10.1007/s12613-013-0831-3
    [30]
    K.Q. Li, W. Ni, M. Zhu, M.J. Zheng, and Y. Li, Iron extraction from oolitic iron ore by a deep reduction process, J. Iron Steel Res. Int., 18(2011), No. 8, p. 9. doi: 10.1016/S1006-706X(11)60096-4
    [31]
    O.I. Nokhrina, I.D. Rozhihina, and I.E. Hodosov, The use of coal in a solid phase reduction of iron oxide, IOP Conf. Ser.: Mater. Sci. Eng., 91(2015), art. No. 012045. doi: 10.1088/1757-899X/91/1/012045
    [32]
    Y. Haseli, Criteria for chemical equilibrium with application to methane steam reforming, Int. J. Hydrogen Energy, 44(2019), No. 12, p. 5766. doi: 10.1016/j.ijhydene.2019.01.130
    [33]
    D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
    [34]
    N.S. Srinivasan, Reduction of iron oxides by carbon in a circulating fluidized bed reactor, Powder Technol., 124(2002), No. 1-2, p. 28. doi: 10.1016/S0032-5910(01)00484-3
    [35]
    A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
    [36]
    W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A Gen., 326(2007), No. 1, p. 17. doi: 10.1016/j.apcata.2007.03.021
    [37]
    J.W. Chen, Y. Jiao, and X.D. Wang, Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 822. doi: 10.1007/s12613-019-1795-8
    [38]
    R. Béchara, H. Hamadeh, O. Mirgaux, and F. Patisson, Optimization of the iron ore direct reduction process through multiscale process modeling, Materials (Basel), 11(2018), No. 7, art. No. 1094.
    [39]
    S. Mishra, Review on reduction kinetics of iron ore–coal composite pellet in alternative and sustainable ironmaking, J. Sustain. Metall., 6(2020), No. 4, p. 541. doi: 10.1007/s40831-020-00299-y
    [40]
    S. Sun and W.K. Lu, A theoretical investigation of kinetics and mechanisms of iron ore reduction in an ore/coal composite, ISIJ Int., 39(1999), No. 2, p. 123. doi: 10.2355/isijinternational.39.123
    [41]
    Y.S. Sun, Y.X. Han, P. Gao, X.C. Wei, and G.F. Li, Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms, Int. J. Miner. Process., 143(2015), p. 87. doi: 10.1016/j.minpro.2015.09.005
    [42]
    H.M. Ahmed, N.N. Viswanathan, and B. Björkman, Isothermal reduction kinetics of self-reducing mixtures, Ironmaking Steelmaking, 44(2017), No. 1, p. 66. doi: 10.1080/03019233.2016.1165497
    [43]
    X.L. Yuan, F.M. Luo, S.F. Liu, M.Y. Zhang, and D.S. Zhou, Comparative study on the kinetics of the isothermal reduction of iron ore composite pellets using coke, charcoal, and biomass as reducing agents, Metals, 11(2021), No. 2, art. No. 340. doi: 10.3390/met11020340
    [44]
    A. Hammam, Y. Cao, A.H.A. El-Geassy, M.H. El-Sadek, Y. Li, H. Wei, M. Omran, and Y.W. Yu, Non-isothermal reduction kinetics of iron ore fines with carbon-bearing materials, Metals, 11(2021), No. 7, art. No. 1137. doi: 10.3390/met11071137
    [45]
    Y.S. Sun, Y.X. Han, X.C. Wei, and P. Gao, Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 703. doi: 10.1007/s10973-015-4863-y
    [46]
    R. Sah and S.K. Dutta, Kinetic studies of iron ore–coal composite pellet reduction by TG–DTA, Trans. Indian Inst. Met., 64(2011), No. 6, p. 583. doi: 10.1007/s12666-011-0065-x
    [47]
    Z.C. Huang, K. Wu, B. Hu, H. Peng, and T. Jiang, Non-isothermal kinetics of reduction reaction of oxidized pellet under microwave irradiation, J. Iron Steel Res. Int., 19(2012), No. 1, p. 1. doi: 10.1016/S1006-706X(12)60038-7
    [48]
    M.C. Goswami, S. Prakash, and S.B. Sarkar, Kinetics of smelting reduction of fluxed composite iron ore pellets, Steel Res., 70(1999), No. 2, p. 41. doi: 10.1002/srin.199905598
    [49]
    A.A. El-Geassy, M.H. Khedr, M.I. Nasr, and M.S. Aly, Behaviour of iron ore–fuel oil composite pellets in isothermal and non-isothermal reduction conditions, Ironmaking Steelmaking, 28(2001), No. 3, p. 237. doi: 10.1179/030192301678091
    [50]
    A. Chatterjee, Role of particle size in mineral processing at Tata Steel, Int. J. Miner. Process., 53(1998), No. 1-2, p. 1. doi: 10.1016/S0301-7516(97)00052-5
    [51]
    T. Leißner, T. Mütze, K. Bachmann, S. Rode, J. Gutzmer, and U.A. Peuker, Evaluation of mineral processing by assessment of liberation and upgrading, Miner. Eng., 53(2013), p. 171. doi: 10.1016/j.mineng.2013.07.018
    [52]
    H.Y. Tian, Z.Q. Guo, R.N. Zhan, J. Pan, D.Q. Zhu, C.C. Yang, L.T. Pan, and X.Z. Huang, Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1164. doi: 10.1007/s42243-021-00646-7
    [53]
    P. Gao, Y.X. Han, Y.J. Li, and Y.S. Sun, Evaluation on deep reduction of iron ore based on digital image processing techniques, J. Northeast. Univ. Nat. Sci., 33(2012), No. 1, p. 133.
    [54]
    P. Gao, Y.S. Sun, D.Z. Ren, and Y.X. Han, Growth of metallic iron particles during coal-based reduction of a rare earths-bearing iron ore, Min. Metall. Explor., 30(2013), No. 1, p. 74.
    [55]
    J.W. Yu, Y.H. Qin, P. Gao, Y.S. Sun, and S.B. Ma, The growth characteristics and kinetics of metallic iron in coal-based reduction of Jinchuan ferronickel slag, Minerals, 11(2021), No. 8, art. No. 876. doi: 10.3390/min11080876
    [56]
    X.M. Li, Y. Li, X.Y. Zhang, Z.Y. Wen, and X.D. Xing, Growth characteristics of metallic iron particles in the direct reduction of nickel slag, Metall. Mater. Trans. B, 51(2020), No. 3, p. 925. doi: 10.1007/s11663-020-01799-8
    [57]
    Z.H. Ma, J.Z. Zhang, W. Li, and J. Chen, Study on deep reduction of oolitic hematite assisted with microwave radiation, Adv. Mater. Res., 941-944(2014), p. 2574. doi: 10.4028/www.scientific.net/AMR.941-944.2574
    [58]
    H.Y. Zhao, Y.L. Chen, and X.Q. Duan, Study on the factors affecting the deep reduction of coal gangue containing high contents of iron and sulfur, Fuel, 288(2021), art. No. 119571. doi: 10.1016/j.fuel.2020.119571
    [59]
    P. Gao, W.T. Zhou, Y.X. Han, Y.J. Li, and C.W. Zhang, Influence mechanisms of additives on coal-based reduction of complex refractory iron ore, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 1. doi: 10.1080/08827508.2020.1793144
    [60]
    C. Kamijo, M. Hoshi, T. Kawaguchi, H. Yamaoka, and Y.S. Kamei, Production of direct reduced iron by a sheet material inserting metallization method, ISIJ Int., 41(2001), No. Suppl, p. S13. doi: 10.2355/isijinternational.41.Suppl_S13
    [61]
    S. Priyadarshi, S. Mishra, B. Kumar, and G.G. Roy, Effect of different forms of carbon on the reduction behaviour of iron ore-carbonaceous material composite pellets in multi-layer bed rotary hearth furnace (RHF), Can. Metall. Q., 60(2021), No. 4, p. 281. doi: 10.1080/00084433.2021.1997279
    [62]
    Y.X. Han, Y.S. Sun, P. Gao, Y.J. Li, and Y.F. Mu, Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore, Min. Metall. Explor., 31(2014), No. 3, p. 169. doi: 10.1007/BF03402274
    [63]
    Y.S. Sun, Y.X. Han, P. Gao, and Y.F. Mu, Particle size measurement of metallic iron in reduced materials based on optical image analysis, Chem. Eng. Technol., 37(2014), No. 12, p. 2030. doi: 10.1002/ceat.201300723
    [64]
    X. Zhang, G.H. Li, M.J. Rao, H.P. Mi, B.J. Liang, J.X. You, Z.W. Peng, and T. Jiang, Growth of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate, J. Cent. South Univ., 27(2020), No. 5, p. 1484. doi: 10.1007/s11771-020-4384-0
    [65]
    H.F. Yang, L.L. Jing, and C.G. Dang, Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation, Chin. J. Nonferrous Met., 21(2011), No. 5, p. 1165.
    [66]
    Y.Q. Zhao, T.C. Sun, and Z. Wang, Extraction of iron from refractory titanomagnetite by reduction roasting and magnetic separation, ISIJ Int., 61(2021), No. 1, p. 93. doi: 10.2355/isijinternational.ISIJINT-2020-251
    [67]
    L. Zhang, H.H. Chen, R.D. Deng, W.R. Zuo, B. Guo, and J.G. Ku, Growth behavior of iron grains during deep reduction of copper slag, Powder Technol., 367(2020), p. 157. doi: 10.1016/j.powtec.2019.11.107
    [68]
    Y.X. Han, C.W. Zhang, Y.S. Sun, and P. Gao, Mechanism analysis on deep reduction of complex refractory iron ore promoted by Na2CO3, J. Northeast. Univ. Nat. Sci., 33(2012), No. 11, p. 1633.
    [69]
    H. Long, Q. Meng, T. Chun, P. Wang, and J. Li, Preparation of metallic iron powder from copper slag by carbothermic reduction and magnetic separation, Can. Metall. Q., 55(2016), No. 3, p. 338. doi: 10.1080/00084433.2016.1181313
    [70]
    D.C. Fan, W. Ni, J.Y. Wang, and K. Wang, Effects of CaO and Na2CO3 on the reduction of high silicon iron ores, J. Wuhan Univ. Technol. Mater Sci Ed, 32(2017), No. 3, p. 508. doi: 10.1007/s11595-017-1626-6
    [71]
    T. Jiang, S.F. Guan, Y. Xia, S.W. Yu, X.X. Xue, R.G. Bai, D.H. Chen, and F.Z. Chang, Research on the coal-based direct reduction of vanadium titanomagenetite, Adv. Mater. Res., 753-755(2013), p. 16. doi: 10.4028/www.scientific.net/AMR.753-755.16
    [72]
    Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
    [73]
    Y.Y. Zhang, Q.G. Xue, G. Wang, and J.S. Wang, Gasification and migration of phosphorus from high-phosphorus iron ore during carbothermal reduction, ISIJ Int., 58(2018), No. 12, p. 2219. doi: 10.2355/isijinternational.ISIJINT-2018-372
    [74]
    S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908. doi: 10.1007/s12613-021-2329-8
    [75]
    H.F. Yang, L.L. Jing, and B.G. Zhang, Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation, J. Hazard. Mater., 185(2011), No. 2-3, p. 1405. doi: 10.1016/j.jhazmat.2010.10.062
    [76]
    S.J. Bai, S.M. Wen, D.W. Liu, W.B. Zhang, and Q.B. Cao, Beneficiation of high phosphorus limonite ore by sodium-carbonate-added carbothermic reduction, ISIJ Int., 52(2012), No. 10, p. 1757. doi: 10.2355/isijinternational.52.1757
    [77]
    W. Yu, T.C. Sun, J. Kou, Y.X. Wei, C.Y. Xu, and Z.Z. Liu, The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets, ISIJ Int., 53(2013), No. 3, p. 427. doi: 10.2355/isijinternational.53.427
    [78]
    D.Q. Zhu, T.J. Chun, J. Pan, L.M. Lu, and Z. He, Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 505. doi: 10.1007/s12613-013-0758-8
    [79]
    A. Basumallick, Influence of CaO and Na2CO3 as additive on the reduction of hematite–lignite mixed pellets, ISIJ Int., 35(1995), No. 9, p. 1050. doi: 10.2355/isijinternational.35.1050
    [80]
    S.J. Bai, C. Lv, S.M. Wen, D.W. Liu, W.B. Zhang, and Q.B. Cao, Effects of sodium carbonate on the carbothermic reduction of siderite ore with high phosphorus content, Min. Metall. Explor., 30(2013), No. 2, p. 100. doi: 10.1007/BF03402412
    [81]
    Z. Zulhan and W. Shalat, Evolution of ferronickel particles during the reduction of low-grade saprolitic laterite nickel ore by coal in the temperature range of 900–1250°C with the addition of CaO–CaF2–H3BO3, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 612. doi: 10.1007/s12613-020-2025-0
    [82]
    W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, and T. Chen, Iron extraction from red mud using roasting with sodium salt, Miner. Process. Extr. Metall. Rev., 42(2021), No. 3, p. 153. doi: 10.1080/08827508.2019.1706049
    [83]
    G.H. Li, S.H. Zhang, M.J. Rao, Y.B. Zhang, and T. Jiang, Effects of sodium salts on reduction roasting and Fe–P separation of high-phosphorus oolitic hematite ore, Int. J. Miner. Process., 124(2013), p. 26. doi: 10.1016/j.minpro.2013.07.006
    [84]
    D. Zinoveev, P. Grudinsky, A. Zakunov, A. Semenov, M. Panova, D. Valeev, A. Kondratiev, V. Dyubanov, and A. Petelin, Influence of Na2CO3 and K2CO3 addition on iron grain growth during carbothermic reduction of red mud, Metals, 9(2019), No. 12, art. No. 1313. doi: 10.3390/met9121313
    [85]
    P.I. Grudinskii, V.G. Dyubanov, D.V. Zinoveev, and M.V. Zheleznyi, Solid-phase reduction and iron grain growth in red mud in the presence of alkali metal salts, Russ. Metall. Met., 2018(2018), No. 11, p. 1020. doi: 10.1134/S0036029518110071
    [86]
    Y.Q. Zhao, T.C. Sun, H.Y. Zhao, X.H. Li, and X.P. Wang, Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore, ISIJ Int., 58(2018), No. 10, p. 1768. doi: 10.2355/isijinternational.ISIJINT-2018-186
    [87]
    S.I. Rudyuk, É.I. Fel'dman, E.I. Chernov, and V.F. Korobeinik, Effect of sulfur and phosphorus on the properties of steel 18B, Met. Sci. Heat Treat., 16(1974), No. 12, p. 1056. doi: 10.1007/BF00664052
    [88]
    V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sādhanā, 28(2003), No. 3-4, p. 359.
    [89]
    M.S. Najjar and D.Y. Jung, High temperature desulfurization of synthesis gas with iron compounds, Fuel Process. Technol., 44(1995), No. 1-3, p. 173. doi: 10.1016/0378-3820(94)00114-9
    [90]
    J.P. Jin, W.T. Zhou, Y.S. Sun, Y.X. Han, and Y.J. Li, Reaction characteristics and existing form of phosphorus during coal-based reduction of oolitic iron ore, Minerals, 11(2021), No. 3, art. No. 247. doi: 10.3390/min11030247
    [91]
    S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and C.Y. Xu, The mechanism of CaCO3 in the gas-based direct reduction of a high-phosphorus oolitic iron ore, Physicochem. Probl. Miner. Process., 57(2021), No. 4, p. 117. doi: 10.37190/ppmp/138882
    [92]
    S.J. Bai, S.M. Wen, D.W. Liu, W.B. Zhang, and Y.J. Xian, Catalyzing carbothermic reduction of siderite ore with high content of phosphorus by adding sodium carbonate, ISIJ Int., 51(2011), No. 10, p. 1601. doi: 10.2355/isijinternational.51.1601
    [93]
    Y.L. Li, T.C. Sun, C.Y. Xu, and Z.H. Liu, New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting, J. Cent. South Univ. Sci. Technol., 43(2012), No. 3, p. 827.
    [94]
    C.Y. Xu, T.C. Sun, J. Kou, Y.L Li, X.L Mo, and L.G Tang, Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2806. doi: 10.1016/S1003-6326(11)61536-7
    [95]
    Y. Xu, T.C. Sun, Z.G. Liu, and C.Y. Xu, Phosphorus occurrence state and phosphorus removal research of a high phosphorous oolitic hematite by direct reduction roasting method, J. Northeast. Univ. Nat. Sci., 34(2013), No. 11, p. 1651.
    [96]
    D.W. Yang, T.C. Sun, H.F. Yang, C.Y. Xu, C.Y. Qi, and Z.X. Li, Dephosphorization mechanism in a roasting process for direct reduction of high-phosphorus oolitic hematite in west Hubei Province, China, J. Univ. Sci. Technol. Beijing, 32(2010), No. 8, p. 968.
    [97]
    H. Ishikawa, J. Kopfle, J. McClelland, and J. Ripke, Rotary hearth furnace technologies for iron ore and recycling applications, Arch. Metall. Mater., 53(2008), No. 2, p. 541.
    [98]
    Y.Y. Zhang, Y.H. Qi, Z.S. Zou, and Y.G. Li, Development prospect of rotary hearth furnace process in China, Adv. Mater. Res., 746(2013), p. 533. doi: 10.4028/www.scientific.net/AMR.746.533
    [99]
    J. Zhang, H.M. Zhou, Y.H. Qi, and D.L. Yan, A Kind of Iron-making Method of Carbon-thermal Pre-reduction, Gas-based Deep Reduction and Synchronous Cooling, Chinese Patent, Appl. 202010246783.7, 2020.
    [100]
    R.H. Zhong, L.Y. Yi, Z.C. Huang, W. Cai, and X. Jiang, Highly efficient beneficiation of low-grade iron ore via ore–coal composite-fed rotary kiln reduction: Pilot-scale study, JOM, 72(2020), No. 4, p. 1680. doi: 10.1007/s11837-020-04053-3
    [101]
    Z.K. Liang, L.Y. Yi, Z.C. Huang, B. Lu, X. Jiang, W. Cai, B.Z. Tian, and Y.Y. Jin, Insight of iron ore-coal composite reduction in a pilot scale rotary kiln: A post-mortem study, Powder Technol., 356(2019), p. 691. doi: 10.1016/j.powtec.2019.08.086
    [102]
    H. Tsuji, Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy, ISIJ Int., 52(2012), No. 6, p. 1000. doi: 10.2355/isijinternational.52.1000
    [103]
    H.Y. Wang, K.Q. Li, W. Ni, X.Y. Huang, and Y. Jia, Experimental research of deep reduction and magnetic separation process of a high-iron copper slag, Met. Mine, 41(2012), No. 11, p. 141.
    [104]
    S. Wang, W. Ni, C.L. Wang, D.Z. Li, and H.Y. Wang, Study of deep reduction process for iron recovery from copper slag tailings, Met. Mine, 43(2014), No. 3, p. 156.
    [105]
    S.W. Zhou, Y.G. Wei, B. Li, and H. Wang, Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant, J. Clean. Prod., 217(2019), p. 423. doi: 10.1016/j.jclepro.2019.01.184
    [106]
    M. Archambo and S.K. Kawatra, Red mud: Fundamentals and new avenues for utilization, Miner. Process. Extr. Metall. Rev., 42(2021), No. 7, p. 427. doi: 10.1080/08827508.2020.1781109
    [107]
    X. Liu, Y.X. Han, F.Y. He, P. Gao, and S. Yuan, Characteristic, hazard and iron recovery technology of red mud—A critical review, J. Hazard. Mater., 420(2021), art. No. 126542. doi: 10.1016/j.jhazmat.2021.126542
    [108]
    Z.C. Huang, L.B. Cai, Y.B. Zhang, Y.B. Yang, and T. Jiang, Reduction of iron oxides of red mud reinforced by Na2CO3 and CaF2, J. Cent. South Univ. Sci. Technol., 41(2010), No. 3, p. 838.
    [109]
    T.J. Chun, D.Q. Zhu, J. Pan, and Z. He, Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation, Can. Metall. Q., 53(2014), No. 2, p. 183. doi: 10.1179/1879139513Y.0000000114
    [110]
    S. Agrawal, V. Rayapudi, and N. Dhawan, Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values, Miner. Eng., 132(2019), p. 202. doi: 10.1016/j.mineng.2018.12.012
    [111]
    J. Pan, G.L. Zheng, D.Q. Zhu, and X.L. Zhou, Utilization of nickel slag using selective reduction followed by magnetic separation, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3421. doi: 10.1016/S1003-6326(13)62883-6
    [112]
    S.B. Ma, and Y.X. Han, Study of extracting valuable metals from nickel smelting slag by a coal-based reduction method, J. China Univ. Min. Technol., 43(2014), No. 2, p. 305.
    [113]
    P. Gao, G.F. Li, Y.X. Han, and Y.S. Sun, Reaction behavior of phosphorus in coal-based reduction of an oolitic hematite ore and pre-dephosphorization of reduced iron, Metals, 6(2016), No. 4, art. No. 82. doi: 10.3390/met6040082
    [114]
    L. Li, Study on acid hydrolysis process of deep reduction slag of panzhihua V-timagnetite, Inorg. Chem. Ind., 42(2010), No. 6, p. 52.
    [115]
    Z.C. Cao, T.C. Sun, X. Xue, and Z.H. Liu, Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process, Minerals, 6(2016), No. 4, art. No. 119. doi: 10.3390/min6040119
    [116]
    S. Liang, X.P. Liang, and Q. Tang, Treatment of secondary dust produced in rotary hearth furnace through alkali leaching and evaporation–crystallization processes, Processes, 8(2020), No. 4, art. No. 396. doi: 10.3390/pr8040396
    [117]
    H. Tsutsumi, S. Yoshida, and M. Tetsumoto, Features of FASTMET process, KOBELCO Technol. Rev., 2010, No. 29, p. 85.
    [118]
    B. Kumar, S. Mishra, G.G. Roy, and P.K. Sen, Estimation of carbon dioxide emissions in rotary hearth furnace using a thermodynamic model, Steel Res. Int., 88(2017), No. 5, art. No. 1600265. doi: 10.1002/srin.201600265
    [119]
    S.H. Zhang, G. Wang, H. Zhang, J.S. Wang, and Q.G. Xue, Effect of gangue composition on iron nugget production from iron ore–coal composite pellet, J. Iron Steel Res. Int., 26(2019), No. 9, p. 917. doi: 10.1007/s42243-018-00221-7
    [120]
    T. Matsumura, Y. Takenaka, M. Shimizu, T. Negami, I. Kobayashi, and A. Uragami, The reduction and melting behavior of carbon composite iron ore pellet on high temperature, Tetsu-to-Hagane, 84(1998), No. 6, p. 405. doi: 10.2355/tetsutohagane1955.84.6_405
    [121]
    B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(2007), No. 1, p. 40. doi: 10.1016/j.resconrec.2006.05.008
    [122]
    B. Anameric and S.K. Kawatra, Laboratory study related to the production and properties of pig iron nuggets, Min. Metall. Explor., 23(2006), No. 1, p. 52. doi: 10.1007/BF03403336
    [123]
    I. Sohn and R.J. Fruehan, The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part I. The role and kinetics of volatile reduction, Metall. Mater. Trans. B, 36(2005), No. 5, p. 605. doi: 10.1007/s11663-005-0051-y
    [124]
    M. Landfahrer, C. Schluckner, R. Prieler, H. Gerhardter, T. Zmek, J. Klarner, and C. Hochenauer, Development and application of a numerically efficient model describing a rotary hearth furnace using CFD, Energy, 180(2019), p. 79. doi: 10.1016/j.energy.2019.04.091
    [125]
    C.H. Liu, X.Y. Ding, H.G. Liu, X.L Yan, C. Dong, and J. Wang, Numerical analysis on characteristics of reduction process within a pre-reduction rotary kiln, Metals, 11(2021), No. 8, art. No. 1180. doi: 10.3390/met11081180
    [126]
    B.A. Gyamfi, F.F. Adedoyin, M.A. Bein, F.V. Bekun, and D.Q. Agozie, The anthropogenic consequences of energy consumption in E7 economies: Juxtaposing roles of renewable, coal, nuclear, oil and gas energy: Evidence from panel quantile method, J. Clean. Prod., 295(2021), art. No. 126373. doi: 10.1016/j.jclepro.2021.126373
    [127]
    O. Kanat, Z. Yan, M.M. Asghar, Z. Ahmed, H. Mahmood, D. Kirikkaleli, and M. Murshed, Do natural gas, oil, and coal consumption ameliorate environmental quality? Empirical evidence from Russia, Environ. Sci. Pollut. Res. Int., 29(2022), No. 3, p. 4540. doi: 10.1007/s11356-021-15989-7
    [128]
    D. Cholico-González, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. García, and C.A. León Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603. doi: 10.1007/s12613-020-2079-z
    [129]
    J.P. Birat, J.P. Vizioz, Y. de Lassat de Pressigny, M. Schneider, and M. Jeanneau, CO2 emissions and the steel industry’s available responses to the greenhouse effect, Rev. Met. Paris, 96(1999), No. 10, p. 1203. doi: 10.1051/metal/199996101203
    [130]
    V.G. Lisienko, Y.N. Chesnokov, A.V. Lapteva, and V.Y. Noskov, Types of greenhouse gas emissions in the production of cast iron and steel, IOP Conf. Ser.: Mater. Sci. Eng., 150(2016), art. No. 012023. doi: 10.1088/1757-899X/150/1/012023
    [131]
    Q.Q. Chen, Y. Gu, Z.Y. Tang, W. Wei, and Y.H. Sun, Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China, Appl. Energy, 220(2018), p. 192. doi: 10.1016/j.apenergy.2018.03.043
    [132]
    W.R. Zhang, Y.O. Zhou, Z. Gong, J.J Kang, C.H Zhao, Z.X Meng, J. Zhang, T. Zhang, and J.H Yuan, Quantifying stranded assets of the coal-fired power in China under the Paris Agreement target, Clim. Policy, 2021. DOI: 10.1080/14693062.2021.1953433
    [133]
    Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626. doi: 10.1007/s12613-021-2374-3
    [134]
    L. Ren, S. Zhou, T.D. Peng, and X.M. Ou, A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China, Renewable Sustainable Energy Rev., 143(2021), art. No. 110846. doi: 10.1016/j.rser.2021.110846
    [135]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [136]
    L.Y. Liu, H.G. Ji, X.F. Lü, T. Wang, S. Zhi, F. Pei, and D.L Quan, Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
    [137]
    K. Rechberger, A. Spanlang, A. Sasiain Conde, H. Wolfmeir, and C. Harris, Green hydrogen-based direct reduction for low-carbon steelmaking, Steel Res. Int., 91(2020), No. 11, art. No. 2000110. doi: 10.1002/srin.202000110
    [138]
    Y.B. Chen, W.G. Liu, and H.B. Zuo, Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1862. doi: 10.1007/s12613-021-2385-0
    [139]
    A. Bhaskar, M. Assadi, and H.N. Somehsaraei, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13(2020), No. 3, art. No. 758. doi: 10.3390/en13030758
    [140]
    Z.Y. Chen, C. Zeilstra, J. van der Stel, J. Sietsma, and Y.X. Yang, Review and data evaluation for high-temperature reduction of iron oxide particles in suspension, Ironmak. Steelmak., 47(2020), No. 7, p. 741. doi: 10.1080/03019233.2019.1589755
    [141]
    Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751. doi: 10.3390/met8100751
    [142]
    A.G. Olabi, A.S. bahri, A.A. Abdelghafar, A. Baroutaji, E.T. Sayed, A.H. Alami, H. Rezk, and M. A. Abdelkareem, Large-vscale hydrogen production and storage technologies: Current status and future directions, Int. J. Hydrogen Energy, 46(2021), No. 45, p. 23498. doi: 10.1016/j.ijhydene.2020.10.110
    [143]
    C. Tarhan and M.A. Çil, A study on hydrogen, the clean energy of the future: Hydrogen storage methods, J. Energy Storage, 40(2021), art. No. 102676. doi: 10.1016/j.est.2021.102676
    [144]
    R.R. Wang, Y.Q. Zhao, A. Babich, D. Senk, and X.Y. Fan, Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities, J. Clean. Prod., 329(2021), art. No. 129797. doi: 10.1016/j.jclepro.2021.129797
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(2110) PDF Downloads(511) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return