Yunsong Liu, Enhui Wang, Linchao Xu, Tao Yang, Zhijun He, Tongxiang Liang, and Xinmei Hou, Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 756-765. https://doi.org/10.1007/s12613-022-2435-2
Cite this article as:
Yunsong Liu, Enhui Wang, Linchao Xu, Tao Yang, Zhijun He, Tongxiang Liang, and Xinmei Hou, Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 756-765. https://doi.org/10.1007/s12613-022-2435-2
Research Article

Synthesis of CA6/AlON composite with enhanced slag resistance

+ Author Affiliations
  • Corresponding authors:

    Enhui Wang    E-mail: houxinmeiustb@ustb.edu.cn

    Xinmei Hou    E-mail: wangenhui@ustb.edu.cn

  • Received: 20 October 2021Revised: 9 February 2022Accepted: 11 February 2022Available online: 12 February 2022
  • Different amounts of AlON have been introduced in calcium hexaaluminate (CA6) using two approaches, that is, one-step and two-step methods, to improve the slag resistance of CA6. A one-step method can directly sinter the mixtures combining Al2O3, CaCO3, and Al in flowing nitrogen, in which AlON clusters are always formed because of the poor wettability of Al by Al2O3, leading to the high porosity of CA6/AlON composite. In a two-step method, CA6 and AlON are prepared separately and then mixed and sintered in flowing nitrogen. Compared with the sample prepared by the one-step method, CA6 and AlON in composite by the two-step method are more uniformly distributed, and the optimized amount of AlON added is 10wt%. The slag corrosion and penetration test shows that the CA6/AlON composite using the two-step method exhibits superior slag corrosion protection. The promoted effect of AlON on slag penetration and corrosion resistance is also discussed.
  • loading
  • [1]
    J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and G.Q. Li, Synthesis of CaO·2MgO·8Al2O3 (CM2A8) and its slag resistance mechanism, J. Eur. Ceram. Soc., 37(2017), No. 4, p. 1799. doi: 10.1016/j.jeurceramsoc.2016.11.018
    [2]
    B.B. Dong, B. Yuan, G. Wang, K. Chen, J.S. Han, and H.X. Li, Fabrication of porous SiC/calcium hexaluminate composites, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 3889. doi: 10.1016/j.jeurceramsoc.2016.05.036
    [3]
    L.C. Xu, E.H. Wang, X.M. Hou, J.H. Chen, Z.J. He, and T.X. Liang, Effect of incorporation of nitrogen on calcium hexaaluminate, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 6155. doi: 10.1016/j.jeurceramsoc.2020.06.057
    [4]
    B. Li, G.Q. Li, H.Y. Chen, J.H. Chen, X.M. Hou, and Y. Li, Physical and mechanical properties of hot-press sintering ternary CM2A8 (CaMg2Al16O27) and C2M2A14 (Ca2Mg2Al28O46) ceramics, J. Adv. Ceram., 7(2018), No. 3, p. 229. doi: 10.1007/s40145-018-0274-4
    [5]
    A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, Structure refinement of CaO·6Al2O3, J. Solid State Chem., 75(1988), No. 1, p. 197. doi: 10.1016/0022-4596(88)90317-9
    [6]
    C. Domı́nguez, J. Chevalier, R. Torrecillas, and G. Fantozzi, Microstructure development in calcium hexaluminate, J. Eur. Ceram. Soc., 21(2001), No. 3, p. 381. doi: 10.1016/S0955-2219(00)00143-6
    [7]
    N. Iyi, S. Takekawa, and S. Kimura, Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures, J. Solid State Chem., 83(1989), No. 1, p. 8. doi: 10.1016/0022-4596(89)90048-0
    [8]
    J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225. doi: 10.1007/s12613-016-1342-9
    [9]
    R. Salomão, V.L. Ferreira, I.R. de Oliveira, A.D.V. Souza, and W.R. Correr, Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 4225. doi: 10.1016/j.jeurceramsoc.2016.05.026
    [10]
    D. Asmi and I.M. Low, Physical and mechanical characteristics of in situ alumina/calcium hexaluminate composites, J. Mater. Sci. Lett., 17(1998), No. 20, p. 1735. doi: 10.1023/A:1006683421321
    [11]
    B.A. Vázquez, P. Pena, A.H. de Aza, M.A. Sainz, and A. Caballero, Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags, J. Eur. Ceram. Soc., 29(2009), No. 8, p. 1347. doi: 10.1016/j.jeurceramsoc.2008.08.031
    [12]
    L. Xu, M. Chen, N. Wang, and X.L. Yin, Corrosion mechanism of MgAl2O4–CaAl4O7–CaAl12O19 composite by steel ladle slag: Effect of additives, J. Eur. Ceram. Soc., 37(2017), No. 7, p. 2737. doi: 10.1016/j.jeurceramsoc.2017.02.025
    [13]
    L. Xu, X.L. Yin, N. Wang, and M. Chen, Effect of Y2O3 addition on the densification, microstructure and mechanical properties of MgAl2O4–CaAl4O7–CaAl12O19 composites, J. Alloys Compd., 702(2017), p. 472. doi: 10.1016/j.jallcom.2017.01.282
    [14]
    B. Feng, Z.H. Wang, Y.H. Fan, J.H. Gu, and Y. Zhang, Creep deformation behavior during densification of ZrB2–SiBCN ceramics with ZrO2 additive, J. Adv. Ceram., 9(2020), No. 5, p. 544. doi: 10.1007/s40145-020-0393-6
    [15]
    S.Z. Yao, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Effectively controlling the crystal growth of Cr2O3 using SiO2 as the second phase, J. Am. Ceram. Soc., 102(2019), No. 4, p. 2187.
    [16]
    Q. Luo, H.Z. Gu, Y.N. Fang, A. Huang, M.J. Zhang, and Z.A. Luo, Enhancement of the densification and thermal properties of Ca2Mg2Al28O46 ceramic by MnO addition, Ceram. Int., 46(2020), No. 11, p. 18734. doi: 10.1016/j.ceramint.2020.04.188
    [17]
    L. Xu, M. Chen, L.Y. Jin, X.L. Yin, N. Wang, and L. Liu, Effect of ZrO2 addition on densification and mechanical properties of MgAl2O4–CaAl4O7–CaAl12O19 composite, J. Am. Ceram. Soc., 98(2015), No. 12, p. 4117. doi: 10.1111/jace.13955
    [18]
    M. Shabani, M.H. Paydar, and M.M. Moshksar, Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 934. doi: 10.1007/s12613-014-0992-8
    [19]
    Y.N. Shen, Y. Xing, P. Jiang, et al., Corrosion resistance evaluation of highly dispersed MgO–MgAl2O4–ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1038. doi: 10.1007/s12613-019-1807-8
    [20]
    N.D. Corbin, Aluminum oxynitride spinel: A review, J. Eur. Ceram. Soc., 5(1989), No. 3, p. 143. doi: 10.1016/0955-2219(89)90030-7
    [21]
    X.C. Zhong and H.L. Zhao, High-temperature properties of oxide-nonoxide refractory composites, Refractories, 34(2000), No. 2, p. 63.
    [22]
    Y. Hong, Y. Li, S.H. Tong, D.D. Yue, and J.J. Ma, Effect of the addition of Al powder on the microstructure and phase constitution of magnesia-spinel composites sintered at 1800°C in N2, Key Eng. Mater., 697(2016), p. 345. doi: 10.4028/www.scientific.net/KEM.697.345
    [23]
    K. Takeda and T. Hosaka, Characteristics of new raw material AlON for refractories, Interceram, 38(1989), No. 1, p. 18.
    [24]
    C.H. Ma, Y. Li, P. Jiang, W.D. Xue, and J.H. Chen, Formation mechanism of γ-AlON and β-SiC reinforcements in a phenolic resin-bonded Al–Si–Al2O3 composite at 1700°C in flowing N2, J. Mater. Sci., 55(2020), No. 14, p. 5772. doi: 10.1007/s10853-020-04450-8
    [25]
    K. Murakami, A. Iwasaki, Y. Akatsuka, and I. Komara, One results of sliding nozzle refractories using aluminum oxynitride, Refractories, 38(1986), No. 336, p. 18.
    [26]
    T. Hosaka and M. Kato, A study of compositional modification of trough mixture by using aluminum oxinitride, Refractories, 37(1985), No. 333, p. 582.
    [27]
    W.Y. Sun and T.S. Yen, Phase relationships in the system Ca–Al–O–N, Mater. Lett., 8(1989), No. 5, p. 150. doi: 10.1016/0167-577X(89)90180-8
    [28]
    H.X. Willems, M.M.R.M. Hendrix, R. Metselaar, and G. de With, Thermodynamics of AlON I: Stability at lower temperatures, J. Eur. Ceram. Soc., 10(1992), No. 4, p. 327. doi: 10.1016/0955-2219(92)90088-U
    [29]
    N. Zhang, B. Liang, X.Y. Wang, H.M. Kan, K.W. Zhu, and X.J. Zhao, The pressureless sintering and mechanical properties of AlON ceramic, Mater. Sci. Eng. A, 528(2011), No. 19-20, p. 6259. doi: 10.1016/j.msea.2011.04.072
    [30]
    Y. Wang, X.M. Xie, J.Q. Qi, et al., Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method, J. Mater. Res., 29(2014), No. 19, p. 2325. doi: 10.1557/jmr.2014.230
    [31]
    M.Y. Su, Y.F. Zhou, K. Wang, Z.F. Yang, Y.G. Cao, and M.C. Hong, Highly transparent AlON sintered from powder synthesized by direct nitridation, J. Eur. Ceram. Soc., 35(2015), No. 4, p. 1173. doi: 10.1016/j.jeurceramsoc.2014.10.036
    [32]
    J.L. Rodríguez-Galicia, A.H. de Aza, J.C. Rendón-Angeles, and P. Pena, The mechanism of corrosion of MgO–CaZrO3–calcium silicate materials by cement clinker, J. Eur. Ceram. Soc., 27(2007), No. 1, p. 79. doi: 10.1016/j.jeurceramsoc.2006.01.014
    [33]
    Z.Y. Deng, M.Y. Zhu, B.J. Zhong, and Y.G. Dai, Metallurgical properties of refining slag with different basicities, J. Northeast. Univ. (Nat. Sci.), 33(2012), No. 4, p. 555.
    [34]
    E.H. Wang, J.H. Chen, X.J. Hu, K.C. Chou, and X.M. Hou, Evolution of aluminum hydroxides at the initial stage of aluminum nitride powder hydrolysis, Ceram. Int., 42(2016), No. 9, p. 11429. doi: 10.1016/j.ceramint.2016.04.079
    [35]
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117(1995), No. 1, p. 1. doi: 10.1006/jcph.1995.1039
    [36]
    M. Matsui, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO–MgO–Al2O3–SiO2, Phys. Chem. Miner., 23(1996), No. 6, p. 345.
    [37]
    C.H. Jiang, K.J. Li, J.L. Zhang, et al., Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions, Metall. Mater. Trans. B, 50(2019), No. 1, p. 367. doi: 10.1007/s11663-018-1450-1
    [38]
    J.E. Jones, On the determination of molecular fields. II. From the equation of state of a gas, Proc. Roy. Soc. A, 106(1924), No. 738, p. 463.
    [39]
    N.H. Kim, Q.D. Fun, K. Komeya, and T. Meguro, Phase reaction and sintering behavior in the pseudoternary system AlN–Y2O3–Al2O3, J. Am. Ceram. Soc., 79(2005), No. 10, p. 2645. doi: 10.1111/j.1151-2916.1996.tb09029.x
    [40]
    P. Korgul, D.R. Wilson, and W.E. Lee, Microstructural analysis of corroded alumina-spinel castable refractories, J. Eur. Ceram. Soc., 17(1997), No. 1, p. 77. doi: 10.1016/S0955-2219(96)00073-8
    [41]
    J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and C.J. Liang, Substitution of Ba for Ca in the structure of CaAl12O19, J. Am. Ceram. Soc., 100(2017), No. 1, p. 413. doi: 10.1111/jace.14482
    [42]
    J.W. McCauley, P. Patel, M.W. Chen, et al., AlON: A brief history of its emergence and evolution, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 223. doi: 10.1016/j.jeurceramsoc.2008.03.046
    [43]
    L.A. Díaz, R. Torrecillas, A.H. de Aza, and P. Pena, Effect of spinel content on slag attack resistance of high alumina refractory castables, J. Eur. Ceram. Soc., 27(2007), No. 16, p. 4623. doi: 10.1016/j.jeurceramsoc.2007.04.007
    [44]
    M.A.L. Braulio, A.G.T. Martinez, A.P. Luz, C. Liebske, and V.C. Pandolfelli, Basic slag attack of spinel-containing refractory castables, Ceram. Int., 37(2011), No. 6, p. 1935. doi: 10.1016/j.ceramint.2011.02.007
    [45]
    A.P. Luz, M.A.L. Braulio, A.G.T. Martinez, and V.C. Pandolfelli, Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations, Ceram. Int., 38(2012), No. 2, p. 1497. doi: 10.1016/j.ceramint.2011.09.033
    [46]
    C.Y. Guo, E.H. Wang, X.M. Hou, et al., Preparation of Zr4+ doped calcium hexaaluminate with improved slag penetration resistance, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4854. doi: 10.1111/jace.17859
    [47]
    M.W. Yan, Y. Li, H.Y. Li, Y. Sun, H.X. Qin, and Q.Y. Zheng, Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3–MgAlON–Zr2Al3C4–(Al2CO)1−x(AlN)x refractories, Ceram. Int., 45(2019), No. 1, p. 346. doi: 10.1016/j.ceramint.2018.09.173
    [48]
    Y. Oishi, A.R. Cooper, and W.D. Kingery, Dissolution in ceramic systems: III, boundary layer concentration gradients, J. Am. Ceram. Soc., 48(1965), No. 2, p. 88. doi: 10.1111/j.1151-2916.1965.tb11805.x
    [49]
    Y. Park and D.J. Min, Sulfide capacity of CaO–SiO2–FeO–Al2O3–MgOsatd. slag, ISIJ Int., 56(2016), No. 4, p. 520. doi: 10.2355/isijinternational.ISIJINT-2015-524
    [50]
    J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
    [51]
    C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(520) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return