Zhenxing Liu, Fangjie Deng, Yuan Zhou, Yanjie Liang, Cong Peng, Bing Peng, Feiping Zhao, Zhihui Yang, and Liyuan Chai, Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 662-670. https://doi.org/10.1007/s12613-022-2438-z
Cite this article as:
Zhenxing Liu, Fangjie Deng, Yuan Zhou, Yanjie Liang, Cong Peng, Bing Peng, Feiping Zhao, Zhihui Yang, and Liyuan Chai, Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 662-670. https://doi.org/10.1007/s12613-022-2438-z
Research Article

Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide

+ Author Affiliations
  • Corresponding authors:

    Yanjie Liang    E-mail: LiangyanjieCSU@163.com

    Liyuan Chai    E-mail: lychai@csu.edu.cn

  • Received: 10 January 2022Revised: 12 February 2022Accepted: 15 February 2022Available online: 17 February 2022
  • Cubic boron arsenide (BAs) has attracted great attention due to its high thermal conductivity, however, its controllable, stable, and ideal preparation remains challenging. Herein, we investigated the effect of iodine-containing transport agents I2 and boron triiodide (BI3) on BAs synthesized and grown through chemical vapor transport. Results show that similar to the commonly used I2, BI3 accelerates the synthesis and improves the mass fraction of BAs from ~12% to over 90% at 820°C and 1.5 MPa, a value beyond the promoting effect of only increasing temperature and pressure. Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%–20%. I2 agglomerates the grown crystals with twin defects (~50 nm wide), and BI3 improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins (~15 nm wide) and increases the stoichiometry ratio (~0.990) to almost 1. Owing to the boron interstitials from the excessive boron supply, the spacing of layers in {111} increases to 0.286 nm in the presence of I2. Owing to its coordinated effect, BI3 only slightly influences the layer spacing at 0.275 nm, which is close to the theoretical value of 0.276 nm. In the chemical vapor transport, the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI3. Different from that of I2, the coordinated effect of BI3 can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs.
  • loading
  • Supplementary Information s12613-022-2438-z.docx
  • [1]
    J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y.J. Hu, Experimental observation of high thermal conductivity in boron arsenide, Science, 361(2018), No. 6402, p. 575. doi: 10.1126/science.aat5522
    [2]
    F. Tian and Z.F. Ren, High thermal conductivity in boron arsenide: From prediction to reality, Angew. Chem. Int. Ed. Engl., 58(2019), No. 18, p. 5824. doi: 10.1002/anie.201812112
    [3]
    C. Sealy, Boron arsenide helps devices keep their cool, Nano Today, 22(2018), p. 2. doi: 10.1016/j.nantod.2018.08.005
    [4]
    T.L. Feng, L. Lindsay, and X.L. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids, Phys. Rev. B, 96(2017), No. 16, art. No. 161201. doi: 10.1103/PhysRevB.96.161201
    [5]
    N.H. Protik, J. Carrete, N.A. Katcho, N. Mingo, and D. Broido, Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide, Phys. Rev. B, 94(2016), No. 4, art. No. 045207. doi: 10.1103/PhysRevB.94.045207
    [6]
    L. Lindsay, D.A. Broido, and T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?, Phys. Rev. Lett., 111(2013), No. 2, art. No. 025901. doi: 10.1103/PhysRevLett.111.025901
    [7]
    Q. Zheng, C.A. Polanco, M.H. Du, L.R. Lindsay, M.F. Chi, J.Q. Yan, and B.C. Sales, Antisite pairs suppress the thermal conductivity of BAs, Phys. Rev. Lett., 121(2018), No. 10, art. No. 105901. doi: 10.1103/PhysRevLett.121.105901
    [8]
    J.A. Perri, S. La Placa, and B. Post, New group III–group V compounds: BP and BAs, Acta Crystallogr., 11(1958), No. 4, art. No. 310.
    [9]
    S.J. Wang, S.F. Swingle, H. Ye, F.R.F. Fan, A.H. Cowley, and A.J. Bard, Synthesis and characterization of a p-type boron arsenide photoelectrode, J. Am. Chem. Soc., 134(2012), No. 27, p. 11056. doi: 10.1021/ja301765v
    [10]
    J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, and L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure, Appl. Phys. Lett., 108(2016), No. 20, art. No. 201905. doi: 10.1063/1.4950970
    [11]
    C.E. Whiteley, Y. Zhang, Y. Gong, S. Bakalova, A. Mayo, J.H. Edgar, and M. Kuball, Semiconducting icosahedral boron arsenide crystal growth for neutron detection, J. Cryst. Growth, 318(2011), No. 1, p. 553. doi: 10.1016/j.jcrysgro.2010.10.057
    [12]
    J.W. Pomeroy, M. Kuball, H. Hubel, N.W.A. Van Uden, D.J. Dunstan, R. Nagarajan, and J.H. Edgar, Raman spectroscopy of B12As2 under high pressure, J. Appl. Phys., 96(2004), No. 1, p. 910. doi: 10.1063/1.1753072
    [13]
    B. Lv, Y.C. Lan, X.Q. Wang, Q. Zhang, Y.J. Hu, A.J. Jacobson, D. Broido, G. Chen, Z.F. Ren, and C.W. Chu, Experimental study of the proposed super-thermal-conductor: BAs, Appl. Phys. Lett., 106(2015), No. 7, art. No. 074105. doi: 10.1063/1.4913441
    [14]
    F. Tian, B. Song, B. Lv, J.Y. Sun, S.Y. Huyan, Q. Wu, J. Mao, Y.Z. Ni, Z.W. Ding, S. Huberman, T.H. Liu, G. Chen, S. Chen, C.W. Chu, and Z.F. Ren, Seeded growth of boron arsenide single crystals with high thermal conductivity, Appl. Phys. Lett., 112(2018), No. 3, art. No. 031903. doi: 10.1063/1.5004200
    [15]
    G.A. Gamage, K. Chen, G. Chen, F. Tian, and Z. Ren, Effect of nucleation sites on the growth and quality of single-crystal boron arsenide, Mater. Today Phys., 11(2019), art. No. 100160. doi: 10.1016/j.mtphys.2019.100160
    [16]
    G.A. Gamage, H.R. Sun, H. Ziyaee, F. Tian, and Z.F. Ren, Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport, Appl. Phys. Lett., 115(2019), No. 9, art. No. 092103. doi: 10.1063/1.5111732
    [17]
    H. Sun, K. Chen, G.A. Gamage, H. Ziyaee, F. Wang, Y. Wang, V.G. Hadjiev, F. Tian, G. Chen, and Z. Ren, Boron isotope effect on the thermal conductivity of boron arsenide single crystals, Mater. Today Phys., 11(2019), art. No. 100169. doi: 10.1016/j.mtphys.2019.100169
    [18]
    F. Tian, K. Luo, C.L. Xie, B. Liu, X.W. Liang, L.Y. Wang, G.A. Gamage, H.R. Sun, H. Ziyaee, J.Y. Sun, Z.S. Zhao, B. Xu, G.Y. Gao, X.F. Zhou, and Z.F. Ren, Mechanical properties of boron arsenide single crystal, Appl. Phys. Lett., 114(2019), No. 13, art. No. 131903. doi: 10.1063/1.5093289
    [19]
    S. Li, Q.Y. Zheng, Y.C. Lv, X.Y. Liu, X.Q. Wang, P.Y. Huang, D.G. Cahill, and B. Lv, High thermal conductivity in cubic boron arsenide crystals, Science, 361(2018), No. 6402, p. 579. doi: 10.1126/science.aat8982
    [20]
    J. Xing, E.R. Glaser, B. Song, J.C. Culbertson, J.A. Freitas, R.A. Duncan, K.A. Nelson, G. Chen, and N. Ni, Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity, Appl. Phys. Lett., 112(2018), No. 24, art. No. 241903. doi: 10.1063/1.5034787
    [21]
    J. Xing, X. Chen, Y.Y. Zhou, J.C. Culbertson, J.A. Freitas, E.R. Glaser, J.S. Zhou, L. Shi, and N. Ni, Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent, Appl. Phys. Lett., 112(2018), No. 26, art. No. 261901. doi: 10.1063/1.5038025
    [22]
    T.L. Chu and A.E. Hyslop, Crystal growth and properties of boron monoarsenide, J. Appl. Phys., 43(1972), No. 2, p. 276. doi: 10.1063/1.1661106
    [23]
    J.L. Lyons, J.B. Varley, E.R. Glaser, J.A. Freitas, J.C. Culbertson, F. Tian, G.A. Gamage, H.R. Sun, H. Ziyaee, and Z.F. Ren, Impurity-derived p-type conductivity in cubic boron arsenide, Appl. Phys. Lett., 113(2018), No. 25, art. No. 251902. doi: 10.1063/1.5058134
    [24]
    H. Detz, D. MacFarland, T. Zederbauer, S. Lancaster, A.M. Andrews, W. Schrenk, and G. Strasser, Growth rate dependence of boron incorporation into BxGa1−xAs layers, J. Cryst. Growth, 477(2017), p. 77. doi: 10.1016/j.jcrysgro.2017.02.043
    [25]
    H. Dumont, D. Rutzinger, C. Vincent, J. Dazord, Y. Monteil, F. Alexandre, and J.L. Gentner, Surface segregation of boron in BxGa1−xAs/GaAs epilayers studied by X-ray photoelectron spectroscopy and atomic force microscopy, Appl. Phys. Lett., 82(2003), No. 12, p. 1830. doi: 10.1063/1.1561164
    [26]
    F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y.C. Lv, K. Chen, S. Sullivan, J. Kim, Y.Y. Zhou, T.H. Liu, M. Goni, Z.W. Ding, J.Y. Sun, G.A.G. Udalamatta Gamage, H.R. Sun, H. Ziyaee, S.Y. Huyan, L.Z. Deng, J.S. Zhou, A.J. Schmidt, S. Chen, C.W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, and Z.F. Ren, Unusual high thermal conductivity in boron arsenide bulk crystals, Science, 361(2018), No. 6402, p. 582. doi: 10.1126/science.aat7932
    [27]
    W. Klement, A. Jayaraman, and G.C. Kennedy, Phase diagrams of arsenic, antimony, and bismuth at pressures up to 70 kbars, Phys. Rev., 131(1963), No. 2, p. 632. doi: 10.1103/PhysRev.131.632
    [28]
    A.F. Armington, Vapor transport of boron, boron phosphide and boron arsenide, J. Cryst. Growth, 1(1967), No. 1, p. 47. doi: 10.1016/0022-0248(67)90007-3
    [29]
    J. Bouix and R. Hillel, Chemical transport of BAs and BP, J. Less-Common Met., 47(1976), p. 67. doi: 10.1016/0022-5088(76)90076-X
    [30]
    V.G. Hadjiev, M.N. Iliev, B. Lv, Z.F. Ren, and C.W. Chu, Anomalous vibrational properties of cubic boron arsenide, Phys. Rev. B, 89(2014), No. 2, art. No. 024308. doi: 10.1103/PhysRevB.89.024308
    [31]
    S.M. Londoño-Restrepo, L.F. Zubieta-Otero, R. Jeronimo-Cruz, M.A. Mondragon, and M.E. Rodriguez-García, Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones, J. Raman Spectrosc., 50(2019), No. 8, p. 1120. doi: 10.1002/jrs.5614
    [32]
    J.J. Wang, D. Chen, Y. Xu, Q.X. Liu, and L.Y. Zhang, Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition, J. Spectrosc., 2013(2013), art. No. 103602. doi: 10.1155/2013/103602
    [33]
    X.H. Meng, A. Singh, R. Juneja, Y.Y. Zhang, F. Tian, Z.F. Ren, A.K. Singh, L. Shi, J.F. Lin, and Y.G. Wang, Pressure-dependent behavior of defect-modulated band structure in boron arsenide, Adv. Mater., 32(2020), No. 45, art. No. e2001942. doi: 10.1002/adma.202001942
    [34]
    M. Endo, H. Uchiyama, Y. Ohno, and J. Hirotani, Temperature dependence of Raman shift in defective single-walled carbon nanotubes, Appl. Phys. Express, 15(2022), No. 2, art. No. 025001. doi: 10.35848/1882-0786/ac4678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2143) PDF Downloads(113) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return