Cite this article as: |
Shanjing Liu, Xiaohan Wan, Yue Sun, Shiqi Li, Xingmei Guo, Ming Li, Rui Yin, Qinghong Kong, Jing Kong, and Junhao Zhang, Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc-air batteries, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-022-2498-0 |
To improve the efficiency of cathodic oxygen reduction reaction (ORR) in zinc-air batteries (ZABs), an adsorption-complexation-calcination method is proposed to generate cobalt-based multicomponent nanoparticles comprising Co, Co3O4 and CoN, as well as numerous N heteroatoms, on graphene nanosheets (Co/Co3O4/CoN/NG). The Co/Co3O4/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene (NG) substrate, which greatly improve the catalytic behaviors for ORR. The results exhibit that the half-wave potential is high to 0.80 V vs. RHE and the limiting current density is 4.60 mA cm-2, which verge on those of commercially available platinum/carbon (Pt/C) catalysts. Investigating as cathodic catalyst for ZABs, the battery shows large specific capacity and open circuit voltage of 843.0 mAh gZn-1 and 1.41 V, respectively. The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co3O4/CoN particles and doped nitrogen on the carbon matrix.