Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 824-833. https://doi.org/10.1007/s12613-022-2523-3
Cite this article as:
Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 824-833. https://doi.org/10.1007/s12613-022-2523-3
Research Article

Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite

+ Author Affiliations
  • Corresponding author:

    Yongsheng Sun    E-mail: yongshengsun@mail.neu.edu.cn

  • Received: 7 March 2022Revised: 11 June 2022Accepted: 6 July 2022Available online: 9 July 2022
  • In order to develop limonite and decrease CO2 emissions, siderite is proposed as a clean reductant for suspension magnetization roasting (SMR) of limonite. An iron concentrate (iron grade: 65.92wt%, iron recovery: 98.54wt%) was obtained by magnetic separation under the optimum SMR conditions: siderite dosage 40wt%, roasting temperature 700°C, roasting time 10 min. According to the magnetic analysis, SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals, thus enabling the recovery of iron via magnetic separation. Based on the phase transformation analysis, during the SMR process, limonite was first dehydrated and converted to hematite, and then siderite decomposed to generate magnetite and CO, where CO reduced the freshly formed hematite to magnetite. The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure, making them easier to be ground. The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism, suggesting that the diffusion of CO controlled the reaction. These results encourage the application of siderite as a reductant in SMR.
  • loading
  • [1]
    Y.T. Song, N. Wang, and A.Q. Yu, Temporal and spatial evolution of global iron ore supply-demand and trade structure, Resour. Policy, 64(2019), art. No. 101506. doi: 10.1016/j.resourpol.2019.101506
    [2]
    X.Q. Hao, H.Z. An, X.Q. Sun, and W.Q. Zhong, The import competition relationship and intensity in the international iron ore trade: From network perspective, Resour. Policy, 57(2018), p. 45. doi: 10.1016/j.resourpol.2018.01.005
    [3]
    S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting—Magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449. doi: 10.1007/s12613-020-1992-5
    [4]
    W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
    [5]
    S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
    [6]
    J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349. doi: 10.1080/08827508.2019.1634565
    [7]
    J. Godin, W.Z. Liu, S. Ren, and C.C. Xu, Advances in recovery and utilization of carbon dioxide: A brief review, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105644. doi: 10.1016/j.jece.2021.105644
    [8]
    Q. Zhang, Y.S. Sun, Y.X. Han, and Y.J. Li, Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting, J. Clean. Prod., 268(2020), art. No. 122173. doi: 10.1016/j.jclepro.2020.122173
    [9]
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [10]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [11]
    D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
    [12]
    W.G. Du, S. Yang, F. Pan, et al., Hydrogen reduction of hematite ore fines to magnetite ore fines at low temperatures, J. Chem., 2017(2017), art. No. 1919720. doi: 10.1155/2017/1919720
    [13]
    S. Yuan, H.X. Xiao, T.Y. Yu, Y.J. Li, and P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol., 372(2020), p. 1. doi: 10.1016/j.powtec.2020.05.112
    [14]
    M. Samouhos, M. Taxiarchou, G. Pilatos, P.E. Tsakiridis, E. Devlin, and M. Pissas, Controlled reduction of red mud by H2 followed by magnetic separation, Miner. Eng., 105(2017), p. 36. doi: 10.1016/j.mineng.2017.01.004
    [15]
    W.B. Li, Y.X. Han, X. Liu, Y.S. Shan, and Y.J. Li, Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings, Physicochem. Probl. Miner. Process., 55(2019), 4, p. 906. doi: 10.5277/ppmp19010
    [16]
    A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602. doi: 10.1016/j.enconman.2018.03.088
    [17]
    X.B. Mao, R.S. Ying, Y.P. Yuan, F. Li, and B.Y. Shen, Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship, Int. J. Hydrogen Energy, 46(2021), No. 9, p. 6857. doi: 10.1016/j.ijhydene.2020.11.158
    [18]
    D. Cholico-González, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. García, and C.A.L. Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603. doi: 10.1007/s12613-020-2079-z
    [19]
    S.S. Rath and D.S. Rao, Dolochar as a reductant in the reduction roasting of iron ore slimes, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1341. doi: 10.1007/s12613-017-1526-y
    [20]
    S.S. Rath, D.S. Rao, A. Tripathy, and S.K. Biswal, Biomass briquette as an alternative reductant for low grade iron ore resources, Biomass Bioenergy, 108(2018), p. 447. doi: 10.1016/j.biombioe.2017.10.045
    [21]
    D. Nayak, N. Dash, N. Ray, and S.S. Rath, Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines, Powder Technol., 353(2019), p. 450. doi: 10.1016/j.powtec.2019.05.053
    [22]
    Y. Wu, M. Fang, L.D. Lan, P. Zhang, K.V. Rao, and Z.Y. Bao, Rapid and direct magnetization of goethite ore roasted by biomass fuel, Sep. Purif. Technol., 94(2012), p. 34. doi: 10.1016/j.seppur.2012.04.008
    [23]
    K. Zhang, Y. Ge, W.C. Guo, et al., Phase transition and magnetic properties of low-grade limonite during reductive roasting, Vacuum, 167(2019), p. 163. doi: 10.1016/j.vacuum.2019.05.038
    [24]
    V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Reduction roasting of hematite to magnetite using carbohydrates, Int. J. Miner. Process., 164(2017), p. 21. doi: 10.1016/j.minpro.2017.05.005
    [25]
    S.S. Rath, D.S. Rao, and B.K. Mishra, A novel approach for reduction roasting of iron ore slime using cow dung, Int. J. Miner. Process., 157(2016), p. 216. doi: 10.1016/j.minpro.2016.11.015
    [26]
    L.A. Zainullin, A.Y. Epishin, D.A. Artov, V.G. Karelin, and N.A. Spirin, High-temperature carbothermal reduction of siderite ore in an electric arc, Metallurgist, 60(2017), No. 11-12, p. 1135. doi: 10.1007/s11015-017-0418-8
    [27]
    T. Rehren, J. Schneider, and C. Bartels, Medieval lead-silver smelting in the Siegerland, West Germany, Hist. Metall., 33(1999), No. 2, p. 73.
    [28]
    C.J. Dixon, The Helen Iron Deposit—Canada, [in] Atlas of Economic Mineral Deposits, Springer, Dordrecht, 1979, p. 62.
    [29]
    B.B. Xing, T.H. Chen, H.B. Liu, C.S. Qing, J.J. Xie, and Q.Q. Xie, Removal of phosphate from aqueous solution by activated siderite ore: Preparation, performance and mechanism, J. Taiwan Inst. Chem. Eng., 80(2017), p. 875. doi: 10.1016/j.jtice.2017.07.016
    [30]
    Y.S. Sun, X.R. Zhu, Y.X. Han, and Y.J. Li, Green magnetization roasting technology for refractory iron ore using siderite as a reductant, J. Clean. Prod., 206(2019), p. 40. doi: 10.1016/j.jclepro.2018.09.113
    [31]
    T.J. Chun, D.Q. Zhu, and J. Pan, Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 223. doi: 10.1080/08827508.2014.928620
    [32]
    X.R. Zhu, Y.X. Han, Y.S. Sun, Y.J. Li, and H.W. Wang, Siderite as a novel reductant for clean utilization of refractory iron ore, J. Clean. Prod., 245(2020), art. No. 118704. doi: 10.1016/j.jclepro.2019.118704
    [33]
    S. Xue, S. Zhang, Y. Mao, H. Li, D. Wang, and H. Zhao, Research on magnetization roasting technology for siderite and limonite in rotary kiln, [in] Proceedings of the 8th CSM Steel Congress, Shanghai, 2011.
    [34]
    V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores, Miner. Eng., 122(2018), p. 277. doi: 10.1016/j.mineng.2018.04.018
    [35]
    S. Mishra, Review on reduction kinetics of iron ore–coal composite pellet in alternative and sustainable ironmaking, J. Sustainable Metall., 6(2020), No. 4, p. 541. doi: 10.1007/s40831-020-00299-y
    [36]
    Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Producing magnetite concentrate via self-magnetization roasting in N2 atmosphere: Phase and structure transformation, and extraction kinetics, J. Ind. Eng. Chem., 104(2021), p. 571. doi: 10.1016/j.jiec.2021.09.008
    [37]
    Y.S. Sun, X.R. Zhu, Y.X. Han, Y.J. Li, and P. Gao, Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study, J. Clean. Prod., 261(2020), art. No. 121221. doi: 10.1016/j.jclepro.2020.121221
    [38]
    S. Yuan, W.T. Zhou, Y.X. Han, and Y.J. Li, Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation, Sep. Sci. Technol., 55(2020), No. 18, p. 3427. doi: 10.1080/01496395.2019.1677715
    [39]
    W.Z. Du, G. Wang, Y. Wang, and X.L. Liu, Thermal degradation of bituminous coal with both model-free and model-fitting methods, Appl. Therm. Eng., 152(2019), p. 169. doi: 10.1016/j.applthermaleng.2019.02.092
    [40]
    S. Singh, T. Patil, S.P. Tekade, M.B. Gawande, and A.N. Sawarkar, Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis, Sci. Total Environ., 783(2021), art. No. 147004. doi: 10.1016/j.scitotenv.2021.147004
    [41]
    W.C. He, X.W. Lü, C.Y. Ding, and Z.M. Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 981. doi: 10.1007/s12613-020-2019-y
    [42]
    M.X. Huang, S.C. Lv, and C.R. Zhou, Thermal decomposition kinetics of glycine in nitrogen atmosphere, Thermochim. Acta, 552(2013), p. 60. doi: 10.1016/j.tca.2012.11.006
    [43]
    L.T. Kamel, Non-isothermal decomposition kinetics of theobromine in nitrogen atmosphere, Eur. J. Chem., 6(2015), No. 2, p. 199. doi: 10.5155/eurjchem.6.2.199-203.1249
    [44]
    F. Škvára and J. Šesták, Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method, J. Therm. Anal., 8(1975), No. 3, p. 477. doi: 10.1007/BF01910127
    [45]
    F. Liu and M.Z. Lan, Effects of gypsum on cementitious systems with different mineral mixtures, [in] 3rd Mainland, Taiwan and Hong Kong Conference on Green Building Materials, Wuhan, 2012, p. 20.
    [46]
    H.Y. Zhao, Y.H. Li, Q. Song, et al., Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three different structures of iron ores, J. Anal. Appl. Pyrolysis, 144(2019), art. No. 104714. doi: 10.1016/j.jaap.2019.104714
    [47]
    P.W. Fang, Z.Q. Gong, Z.B. Wang, Z.T. Wang, and F.Z. Meng, Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS, Renewable Energy, 140(2019), p. 884. doi: 10.1016/j.renene.2019.03.114
    [48]
    B. Janković, S. Mentus, and D. Jelić, A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere, Phys. B Condens. Matter, 404(2009), No. 16, p. 2263. doi: 10.1016/j.physb.2009.04.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(553) PDF Downloads(117) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return