Chen Ma, Dong Wang, Jinyu Liu, Ning Peng, Wei Shang, and Yuqing Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 959-969. https://doi.org/10.1007/s12613-022-2542-0
Cite this article as:
Chen Ma, Dong Wang, Jinyu Liu, Ning Peng, Wei Shang, and Yuqing Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 959-969. https://doi.org/10.1007/s12613-022-2542-0
Research Article

Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy

+ Author Affiliations
  • Corresponding authors:

    Wei Shang    E-mail: 2001018@glut.edu.cn

    Yuqing Wen    E-mail: 2006027@glut.edu.cn

  • Received: 17 May 2022Revised: 25 August 2022Accepted: 26 August 2022Available online: 30 August 2022
  • Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys. However, its application is limited due to its defects. This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition. The morphology and structure were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffractometer (XRD). Image-Pro Plus 6.0 was used to determine the porosity of the coating, which was decreased from 8.53% to 0.51%. Simultaneously, the coating thickness was increased by a factor of four. The anti-corrosion performance of each sample was evaluated using electrochemical tests, and the findings revealed that the corrosion current density of coatings (icorr) of the samples were lowered from 9.152 × 10–2 to 6.152 × 10–4 mA·cm−2, and the total resistance (RT) of the samples were enhanced from 2.19 × 104 to 2.33 × 105 Ω·cm2. The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h. In addition, the mechanism of PEO self-sealing behavior was described in this article.
  • loading
  • [1]
    Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
    [2]
    K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys, J. Magnes. Alloys, 7(2019), No. 2, p. 345. doi: 10.1016/j.jma.2019.03.002
    [3]
    H.L. Huang and W.L. Yang, Corrosion behavior of AZ91D magnesium alloy in distilled water, Arab. J. Chem., 13(2020), No. 7, p. 6044. doi: 10.1016/j.arabjc.2020.05.004
    [4]
    G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
    [5]
    F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
    [6]
    J.H. Chu, L.B. Tong, M. Wen, et al., Inhibited corrosion activity of biomimetic graphene-based coating on Mg alloy through a cerium intermediate layer, Carbon, 161(2020), p. 577. doi: 10.1016/j.carbon.2020.01.086
    [7]
    L.X. Li, Z.H. Xie, C. Fernandez, et al., Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection, Electrochim. Acta, 330(2020), art. No. 135186. doi: 10.1016/j.electacta.2019.135186
    [8]
    G.Q. Duan, L.X. Yang, S.J. Liao, et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197. doi: 10.1016/j.corsci.2018.02.051
    [9]
    Ö. Bayrak, H. Ghahramanzadeh Asl, and A. Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1269. doi: 10.1007/s12613-020-2020-5
    [10]
    Z.Q. Zhang, L. Wang, M.Q. Zeng, et al., Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy, J. Magnes. Alloys, 9(2021), No. 4, p. 1443. doi: 10.1016/j.jma.2020.06.011
    [11]
    D. Jiang, H. Zhou, S. Wan, G.Y. Cai, and Z.H. Dong, Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly, Surf. Coat. Technol., 339(2018), p. 155. doi: 10.1016/j.surfcoat.2018.02.001
    [12]
    Y.B. Zhao, L.Q. Shi, X.J. Ji, et al., Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy, J. Colloid Interface Sci., 526(2018), p. 43. doi: 10.1016/j.jcis.2018.04.071
    [13]
    H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, and E. Asghari, Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol–gel coating applied on AZ91 Mg alloy, Mater. Chem. Phys., 225(2019), p. 298. doi: 10.1016/j.matchemphys.2018.12.059
    [14]
    T.X. Lu, C.G. Chen, Z.M. Guo, P. Li, and M.X. Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in situ reaction, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1477. doi: 10.1007/s12613-019-1889-3
    [15]
    V. Dehnavi, W.J. Binns, J.J. Noël, D.W. Shoesmith, and B.L. Luan, Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy, J. Magnes. Alloys, 6(2018), No. 3, p. 229. doi: 10.1016/j.jma.2018.05.008
    [16]
    M. Roknian, A. Fattah-Alhosseini, S.O. Gashti, and M.K. Keshavarz, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution, J. Alloys Compd., 740(2018), p. 330. doi: 10.1016/j.jallcom.2017.12.366
    [17]
    X.P. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles, Electrochim. Acta, 196(2016), p. 680. doi: 10.1016/j.electacta.2016.03.042
    [18]
    H. Tang and Y. Gao, Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation, J. Alloys Compd., 688(2016), p. 699. doi: 10.1016/j.jallcom.2016.07.079
    [19]
    D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, and A.V. Puz’, Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles, J. Mater. Sci. Technol., 33(2017), No. 5, p. 461. doi: 10.1016/j.jmst.2017.01.021
    [20]
    K.R. Wu, C.H. Hung, C.W. Yeh, and J.K. Wu, Microporous TiO2–WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering, Appl. Surf. Sci., 263(2012), p. 688. doi: 10.1016/j.apsusc.2012.09.142
    [21]
    F. Muhaffel and H. Cimenoglu, Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy, Surf. Coat. Technol., 357(2019), p. 822. doi: 10.1016/j.surfcoat.2018.10.089
    [22]
    A. Fattah-Alhosseini, K. Babaei, and M. Molaei, Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review, Surf. Interfaces, 18(2020), art. No. 100441. doi: 10.1016/j.surfin.2020.100441
    [23]
    B.W. Zhu, L. Wang, Y.Z. Wu, W. Yue, J. Liang, and B.C. Cao, Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation, J. Biomater. Appl., 36(2022), No. 9, p. 1664. doi: 10.1177/08853282211046776
    [24]
    M. Babaei, C. Dehghanian, P. Taheri, and M. Babaei, Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2–ZrO2 composite layers prepared on CP Ti by micro arc oxidation method, Surf. Coat. Technol., 307(2016), p. 554. doi: 10.1016/j.surfcoat.2016.09.050
    [25]
    M. S. Joni and A. Fattah-Alhosseini, Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy, J. Alloys Compd., 661(2016), p. 237. doi: 10.1016/j.jallcom.2015.11.169
    [26]
    M. Vakili-Azghandi and A. Fattah-Alhosseini, Effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation coatings on 6061Al alloy in artificial seawater, Metall. Mater. Trans. A, 48(2017), No. 10, p. 4681. doi: 10.1007/s11661-017-4205-8
    [27]
    L.J. Bai, B.X. Dong, G.T. Chen, T. Xin, J.N. Wu, and X.D. Sun, Effect of positive pulse voltage on color value and corrosion property of magnesium alloy black micro-arc oxidation ceramic coating, Surf. Coat. Technol., 374(2019), p. 402. doi: 10.1016/j.surfcoat.2019.05.067
    [28]
    Y.W. Song, K.H. Dong, D.Y. Shan, and E.H. Han, Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy, J. Magnes. Alloys, 1(2013), No. 1, p. 82. doi: 10.1016/j.jma.2013.02.009
    [29]
    Z. Li, Z. Chen, S. Feng, T. Zhao, and W.Z. Wang, Effects of Na2WO4 on the MAO coatings on AZ80, Surf. Eng., 36(2020), p. 817. doi: 10.1080/02670844.2019.1656371
    [30]
    B. Zou, G.H. Lü, G.L. Zhang, and Y.Y. Tian, Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 5, p. 1500. doi: 10.1016/S1003-6326(15)63751-7
    [31]
    X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, and X.Z. Lin, Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism, Surf. Coat. Technol., 269(2015), p. 228. doi: 10.1016/j.surfcoat.2014.09.071
    [32]
    S.N. Pak, Z.P. Yao, K.S. Ju, C.N. Ri, and Q.X. Xia, Effect of organic additives on structure and corrosion resistance of MAO coating, Vacuum, 151(2018), p. 8. doi: 10.1016/j.vacuum.2018.01.049
    [33]
    M. Nadimi and C. Dehghanian, Incorporation of ZnO–ZrO2 nanoparticles into TiO2 coatings obtained by PEO on Ti–6Al–4V substrate and evaluation of its corrosion behavior, microstructural and antibacterial effects exposed to SBF solution, Ceram. Int., 47(2021), No. 23, p. 33413. doi: 10.1016/j.ceramint.2021.08.248
    [34]
    M.M. Krishtal, P.V. Ivashin, I.S. Yasnikov, and A.V. Polunin, Effect of nanosize SiO2 particles added into electrolyte on the composition and morphology of oxide layers formed in alloy AK6M2 under microarc oxidizing, Met. Sci. Heat Treat., 57(2015), No. 7-8, p. 428. doi: 10.1007/s11041-015-9900-8
    [35]
    W.P. Li, M.Q. Tang, L.Q. Zhu, and H.C. Liu, Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance, Appl. Surf. Sci., 258(2012), No. 24, p. 10017. doi: 10.1016/j.apsusc.2012.06.066
    [36]
    Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579. doi: 10.1016/j.corsci.2009.10.016
    [37]
    M.F. He, L. Liu, Y.T. Wu, Z.X. Tang, and W.B. Hu, Corrosion properties of surface-modified AZ91D magnesium alloy, Corros. Sci., 50(2008), No. 12, p. 3267. doi: 10.1016/j.corsci.2008.09.034
    [38]
    T.F. Xiang, S.L. Zheng, M. Zhang, H.R. Sadig, and C. Li, Bioinspired slippery zinc phosphate coating for sustainable corrosion protection, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10960. doi: 10.1021/acssuschemeng.8b02345
    [39]
    M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, and G. Bahlakeh, Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings, Carbon, 161(2020), p. 231. doi: 10.1016/j.carbon.2020.01.082
    [40]
    A.K. Behera, A. Das, S. Das, and A. Mallik, Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1525. doi: 10.1007/s12613-020-2124-y
    [41]
    W. Shang, F. Wu, Y.Q. Wen, C.B. He, X.Q. Zhan, and Y.Q. Li, Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1200. doi: 10.1021/acs.iecr.8b05303
    [42]
    C.Q. Wu, Q. Liu, R.R. Chen, et al., Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 11106. doi: 10.1021/acsami.6b16848
    [43]
    A. Fattah-Alhosseini, R. Chaharmahali, and K. Babaei, Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review, J. Magnes. Alloys, 8(2020), No. 3, p. 799. doi: 10.1016/j.jma.2020.05.001
    [44]
    A. Bordbar-Khiabani, B. Yarmand, and M. Mozafari, Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte, Surf. Coat. Technol., 360(2019), p. 153. doi: 10.1016/j.surfcoat.2019.01.002
    [45]
    H.P. Duan, C.W. Yan, and F.H. Wang, Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochim. Acta, 52(2007), No. 15, p. 5002. doi: 10.1016/j.electacta.2007.02.021
    [46]
    Z.R. Zheng, M.C. Zhao, L.L. Tan, et al., Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation, Surf. Coat. Technol., 386(2020), art. No. 125456. doi: 10.1016/j.surfcoat.2020.125456
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(702) PDF Downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return