Jiahao Wang, Peiyuan Ni, Chao Chen, Mikael Ersson, and Ying Li, Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 844-856. https://doi.org/10.1007/s12613-022-2558-5
Cite this article as:
Jiahao Wang, Peiyuan Ni, Chao Chen, Mikael Ersson, and Ying Li, Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 844-856. https://doi.org/10.1007/s12613-022-2558-5
Research Article

Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process

+ Author Affiliations
  • Corresponding authors:

    Peiyuan Ni    E-mail: nipeiyuan@smm.neu.edu.cn

    Ying Li    E-mail: liying@mail.neu.edu.cn

  • Received: 19 August 2022Revised: 16 September 2022Accepted: 29 September 2022Available online: 30 September 2022
  • A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow, circulation flow rate, and mixing time during Ruhrstahl-Heraeus (RH) refining process. Also, a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up, and measurements were carried out to validate the mathematical model. The results show that, with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min–1, the mixing time predicted by the mathematical model agrees well with the measured values. The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations, where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value. In addition, the circulation flow rate was 9 kg·s–1. When the gas blowing nozzle was horizontally rotated by either 30° or 45°, the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle, due to the rotational flow formed in the up-snorkel. Furthermore, the mixing time at the monitoring point 1, 2, and 3 was shortened by around 21.3%, 28.2%, and 12.3%, respectively. With the nozzle angle of 30° and 45°, the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
  • loading
  • [1]
    K. Nakanishi, J. Szekely, and C.W. Chang, Experimental and theoretical investigation of mixing phenomena in the RH-vacuum process, Ironmaking Steelmaking, 2(1975), No. 2, p. 115.
    [2]
    K. Shirabe and J. Szekely, A mathematical model of fluid flow and inclusion coalescence in the RH vacuum degassing system, ISIJ Int., 23(1983), No. 6, p. 465. doi: 10.2355/isijinternational1966.23.465
    [3]
    R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada, Numerical analysis of molten steel flow in ladle of RH process, ISIJ Int., 29(1989), No. 7, p. 589. doi: 10.2355/isijinternational.29.589
    [4]
    Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori, Fluid flow in ladle and its effect on decarburization rate in RH degasser, ISIJ Int., 33(1993), No. 10, p. 1088. doi: 10.2355/isijinternational.33.1088
    [5]
    F. Ahrenhold and W. Pluschkell, Mixing phenomena inside the ladle during RH decarburization of steel melts, Steel Res., 70(1999), No. 8-9, p. 314. doi: 10.1002/srin.199905646
    [6]
    S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu, Mixing evaluation in the RH process using mathematical modelling, ISIJ Int., 44(2004), No. 1, p. 82. doi: 10.2355/isijinternational.44.82
    [7]
    P.A. Kishan and S.K. Dash, Prediction of circulation flow rate in the RH degasser using discrete phase particle modeling, ISIJ Int., 49(2009), No. 4, p. 495. doi: 10.2355/isijinternational.49.495
    [8]
    J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Mathematical model of the flow, Steel Res. Int., 77(2006), No. 1, p. 32. doi: 10.1002/srin.200606127
    [9]
    J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Application of the model and results, Steel Res. Int., 77(2006), No. 2, p. 91. doi: 10.1002/srin.200606359
    [10]
    H.T. Ling, F. Li, L.F. Zhang, and A.N. Conejo, Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1950. doi: 10.1007/s11663-016-0669-y
    [11]
    G.J. Chen, S.P. He, and Y.G. Li, Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF–DPM coupled model, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2176. doi: 10.1007/s11663-017-0992-y
    [12]
    B. Wang, B.H. Zhu, and B. Zhang, Numerical simulation of gas–steel–slag multiphase flow in the vacuum chamber of the RH degasser, JOM, 73(2021), No. 10, p. 2920. doi: 10.1007/s11837-021-04816-6
    [13]
    G.J. Chen and S.P. He, Hydrodynamic modeling of two-phase flow in the industrial Ruhrstahl-Heraeus degasser: Effect of bubble expansion models, Metall. Mater. Trans. B, 53(2022), No. 1, p. 208. doi: 10.1007/s11663-021-02357-6
    [14]
    P. Shao, S. Liu, and X. Miao, CFD–PBM simulation of bubble coalescence and breakup in top blown-rotary agitated reactor, J. Iron Steel Res. Int., 29(2022), No. 2, p. 223. doi: 10.1007/s42243-021-00636-9
    [15]
    Y.G. Park, K.W. Yi, and S.B. Ahn, The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations, ISIJ Int., 41(2001), No. 5, p. 403. doi: 10.2355/isijinternational.41.403
    [16]
    R.K. Hanna, T. Jones, R. Blake, and M. Millman, Water modelling to aid improvement of degasser performance for production of ultralow carbon interstitial free steels, Ironmaking Steelmaking, 21(1994), p. 37.
    [17]
    C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, and A.M. Cui, Mathematical model of RH blow argon mode affecting: Decarburization rate in ultra-low carbon steel refining, J. Iron Steel Res. Int., 19(2012), No. 5, p. 23. doi: 10.1016/S1006-706X(12)60095-8
    [18]
    L.C. Trindade, J.J.M. Peixoto, C.A. Silva, et al., Influence of obstruction at gas-injection nozzles (number and position) in RH degasser process, Metall. Mater. Trans. B, 50(2019), No. 1, p. 578. doi: 10.1007/s11663-018-1474-6
    [19]
    D. Mukherjee, A.K. Shukla, and D.G. Senk, Cold model-based investigations to study the effects of operational and nonoperational parameters on the Ruhrstahl-Heraeus degassing process, Metall. Mater. Trans. B, 48(2017), No. 2, p. 763. doi: 10.1007/s11663-016-0877-5
    [20]
    J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow in a whole degasser during RH refining process, Ironmaking Steelmaking, 32(2005), No. 5, p. 427. doi: 10.1179/174328105X48133
    [21]
    X.G. Ai, Y.P. Bao, W. Jiang, J.H. Liu, P.H. Li, and T.Q. Li, Periodic flow characteristics during RH vacuum circulation refining, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 17. doi: 10.1007/s12613-010-0103-4
    [22]
    V. Seshadri and S.L.D.S. Costa, Cold model studies of RH degassing process, ISIJ Int., 26(1986), No. 2, p. 133. doi: 10.2355/isijinternational1966.26.133
    [23]
    Y.H. Li, Y.P. Bao, R. Wang, L.F. Ma, and J.S. Liu, Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 153. doi: 10.1007/s12613-018-1558-y
    [24]
    L. Lin, Y.P. Bao, F. Yue, L.Q. Zhang, and H.L. Ou, Physical model of fluid flow characteristics in RH–TOP vacuum refining process, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 483. doi: 10.1007/s12613-012-0584-4
    [25]
    Q. Wang, S.Y. Jia, F.S. Qi, et al., A CFD study on refractory wear in RH degassing process, ISIJ Int., 60(2020), No. 9, p. 1938. doi: 10.2355/isijinternational.ISIJINT-2019-768
    [26]
    B. Li and F. Tsukihashi, Modeling of circulation flow in RH degassing vessel water designed for two- and multi-legs operations, ISIJ Int., 40(2000), No. 12, p. 1203. doi: 10.2355/isijinternational.40.1203
    [27]
    F. Obata, R. Waka, K. Uehara, K. Ito, and Y. Kawata, Circulation characteristics of RH degassing vessel water model with multi-legs, Tetsu-to-Hagane, 86(2000), No. 4, p. 225. doi: 10.2355/tetsutohagane1955.86.4_225
    [28]
    H. Ling, L. Zhang, and C. Liu, Effect of snorkel shape on the fluid flow during RH degassing process: Mathematical modelling, Ironmaking Steelmaking, 45(2018), No. 2, p. 145. doi: 10.1080/03019233.2016.1248700
    [29]
    T. Kuwabara, K. Umezawa, K.J. Mori, and H. Watanabe, Investigation of decarburization behavior in RH-reactor and its operation improvement, ISIJ Int., 28(1988), No. 4, p. 305. doi: 10.2355/isijinternational1966.28.305
    [30]
    Z.F. Ren, Z.G. Luo, F.X. Meng, et al., Physical simulation on molten steel flow characteristics of RH vacuum chamber with arched snorkels, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6525096. doi: 10.1155/2020/6525096
    [31]
    G.J. Chen and S.P. He, Mixing behavior in the RH degasser with bottom gas injection, Vacuum, 130(2016), p. 48. doi: 10.1016/j.vacuum.2016.04.028
    [32]
    R.D. Wang, Y. Jin, and H. Cui, The flow behavior of molten steel in an RH degasser under different ladle bottom stirring processes, Metall. Mater. Trans. B, 53(2022), No. 1, p. 342. doi: 10.1007/s11663-021-02371-8
    [33]
    D.Q. Geng, H. Lei, and J.C. He, Simulation on flow field and mixing phenomenon in RH degasser with ladle bottom blowing, Ironmaking Steelmaking, 39(2012), No. 6, p. 431. doi: 10.1179/1743281211Y.0000000090
    [34]
    D.Q. Geng, J.X. Zheng, K. Wang, et al., Simulation on decarburization and inclusion removal process in the Ruhrstahl-Heraeus (RH) process with ladle bottom blowing, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1484. doi: 10.1007/s11663-015-0314-1
    [35]
    S.P. He, G.J. Chen, and C.J. Guo, Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF–DPM coupled model, Ironmaking Steelmaking, 46(2019), No. 8, p. 771. doi: 10.1080/03019233.2017.1410948
    [36]
    J.F. Dong, C. Feng, R. Zhu, G.S. Wei, J.J. Jiang, and S.Z. Chen, Simulation and application of Ruhrstahl-Heraeus (RH) reactor with bottom-blowing, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2127. doi: 10.1007/s11663-021-02174-x
    [37]
    B. Li, Y. Luan, F. Qi, and H. Huo, Experimental investigation on circulation flow in RH refining system with swirling flow, J. Northeast Univ., 26(2005), No. 8, p. 726.
    [38]
    B.K. Li and F. Tsukihashi, Effect of rotating magnetic field on two-phase flow in RH vacuum degassing vessel, ISIJ Int., 45(2005), No. 7, p. 972. doi: 10.2355/isijinternational.45.972
    [39]
    D.Q. Geng, H. Lei, and J.C. He, Effect of traveling magnetic field on flow, mixing, decarburization and inclusion removal during RH refining process, ISIJ Int., 52(2012), No. 6, p. 1036. doi: 10.2355/isijinternational.52.1036
    [40]
    F.S. Qi, B.K. Li, and F. Tsukihashi, Behaviour of argon gas bubbles in an electromagnetic driven swirling flow, Steel Res. Int., 78(2007), No. 5, p. 409. doi: 10.1002/srin.200705912
    [41]
    L.Y. Wang, Z.Y. Liu, M. He, et al., Flow fields control for bubble refinement induced by electromagnetic fields, J. Iron Steel Res. Int., 29(2022), No. 4, p. 575. doi: 10.1007/s42243-021-00627-w
    [42]
    W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd eds., CRC Press, Florida, 2012, p. 5.
    [43]
    J. Han, X.D. Wang, and D.C. Ba, Coordinated analysis of multiple factors of argon blowing parameters on the effect of circulation flow rate in RH vacuum refining process, Vacuum, 109(2014), p. 68. doi: 10.1016/j.vacuum.2014.05.007
    [44]
    COMSOL, CFD Module User’s Guide, Release 5.3, SWE, 2017, p. 44.
    [45]
    B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, New York, 1972.
    [46]
    COMSOL, Particle Tracing Module User’s Guide, Release 5.6, SWE, 2020, p. 267.
    [47]
    Y. Luo, C. Liu, Y. Ren, and L.F. Zhang, Modeling on the fluid flow and mixing phenomena in a RH steel degasser with oval down-leg snorkel, Steel Res. Int., 89(2018), No. 12, art. No. 1800048. doi: 10.1002/srin.201800048
    [48]
    L. Schiller and Z.A. Naumann, A drag coefficient correlation, Zeitschrift Des Vereins Deutscher Ingenieure, 77(1935), p. 318.
    [49]
    M. Sano and K. Mori, Dynamics of bubble swarms in liquid metals, Trans. Iron Steel Inst. Jpn, 20(1980), No. 10, p. 668. doi: 10.2355/isijinternational1966.20.668
    [50]
    A. Ghaffari and A. Rahbar-Kelishami, MD simulation and evaluation of the self-diffusion coefficients in aqueous NaCl solutions at different temperatures and concentrations, J. Mol. Liq., 187(2013), p. 238. doi: 10.1016/j.molliq.2013.08.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(983) PDF Downloads(60) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return