Lipeng Deng, Pengliang Niu, Liming Ke, Jinhe Liu, and Jidong Kang, Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 660-669. https://doi.org/10.1007/s12613-022-2561-x
Cite this article as:
Lipeng Deng, Pengliang Niu, Liming Ke, Jinhe Liu, and Jidong Kang, Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 660-669. https://doi.org/10.1007/s12613-022-2561-x
Research Article

Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding

+ Author Affiliations
  • Corresponding author:

    Lipeng Deng    E-mail: denglipeng@nchu.edu.cn

  • Received: 21 July 2022Revised: 19 October 2022Accepted: 21 October 2022Available online: 25 October 2022
  • The exit-hole in friction stir spot welded (FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exit-hole based on resistance welding (FEBRW). The filling dynamic behavior of force was recorded by a device monitoring. Optical microscope (OM), electron backscatter diffraction (EBSD), and tensile shear tests and finite element modelling were conducted to investigate the repairing stages and bonding mechanisms of the repaired joints in detail. Results showed that exit-hole was completely filled and repaired experiencing three stages. Metallurgical bonding was achieved between plug and exit-hole wall in two forms, including melting bonding in the middle of the joints and partial diffusion bonding on both the upper and bottom of the joints. The highest tensile shear strength of the repaired joints was 7.43 kN, which was 36.3% higher than that of the as welded joints. Resistance welding paves an efficient way to repair the exit-hole in FSSWed joints.
  • loading
  • [1]
    C.R. Hutchinson, F. de Geuser, Y. Chen, and A. Deschamps, Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering, Acta Mater., 74(2014), p. 96. doi: 10.1016/j.actamat.2014.04.027
    [2]
    P.L. Niu, W.Y. Li, and D.L. Chen, Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect, J. Mater. Sci. Technol., 73(2021), p. 91. doi: 10.1016/j.jmst.2020.07.045
    [3]
    G.H. Li, L. Zhou, W.L. Zhou, X.G. Song, and Y.X. Huang, Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum–copper metals, J. Mater. Res. Technol., 8(2019), No. 3, p. 2613. doi: 10.1016/j.jmrt.2019.02.015
    [4]
    X.D. Xu, X.Q. Yang, G. Zhou, and J.H. Tong, Microstructures and fatigue properties of friction stir lap welds in aluminum alloy AA6061-T6, Mater. Des., 35(2012), p. 175. doi: 10.1016/j.matdes.2011.09.064
    [5]
    W.Y. Li, J.F. Li, Z.H. Zhang, D.L. Gao, W.B. Wang, and C.L. Dong, Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect, Mater. Des., 62(2014), p. 247.
    [6]
    Q. Chu, W.Y. Li, X.W. Yang, et al., Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al–Li alloy, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1739. doi: 10.1016/j.jmst.2018.03.009
    [7]
    M.D. Tier, T.S. Rosendo, J.F. dos Santos, et al., The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds, J. Mater. Process. Technol., 213(2013), No. 6, p. 997. doi: 10.1016/j.jmatprotec.2012.12.009
    [8]
    Z. Shen, Y. Ding, J. Chen, et al., Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1027. doi: 10.1016/j.jmst.2019.01.001
    [9]
    Z.K. Shen, Y.Q. Ding, and A.P. Gerlich, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., 45(2020), No. 6, p. 457. doi: 10.1080/10408436.2019.1671799
    [10]
    W.Y. Li, Q. Chu, X.W. Yang, J.J. Shen, A. Vairis, and W.B. Wang, Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy, J. Mater. Process. Technol., 252(2018), p. 69. doi: 10.1016/j.jmatprotec.2017.09.003
    [11]
    Q. Chu, X.W. Yang, W.Y. Li, et al., On visualizing material flow and precipitate evolution during probeless friction stir spot welding of an Al–Li alloy, Mater. Charact., 144(2018), p. 336. doi: 10.1016/j.matchar.2018.07.026
    [12]
    C.C. de Castro, J.J. Shen, A.H. Plaine, et al., Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets, J. Mater. Res. Technol., 20(2022), p. 857. doi: 10.1016/j.jmrt.2022.07.092
    [13]
    Y.F. Zou, W.Y. Li, X.W. Yang, et al., Characterizations of dissimilar refill friction stir spot welding 2219 aluminum alloy joints of unequal thickness, J. Manuf. Process., 79(2022), p. 91. doi: 10.1016/j.jmapro.2022.04.062
    [14]
    H.Y. Zhou and K.P. Mehta, Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheets, Vacuum, 178(2020), art. No. 109445. doi: 10.1016/j.vacuum.2020.109445
    [15]
    B. Han, Y.X. Huang, S.X. Lv, L. Wan, J.C. Feng, and G.S. Fu, AA7075 bit for repairing AA2219 keyhole by filling friction stir welding, Mater. Des., 51(2013), p. 25. doi: 10.1016/j.matdes.2013.03.089
    [16]
    M. Paidar, O.O. Ojo, A. Moghanian, A.S. Karapuzha, and A. Heidarzadeh, Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength, J. Manuf. Process., 41(2019), p. 177. doi: 10.1016/j.jmapro.2019.03.030
    [17]
    M. Sajed, Parametric study of two-stage refilled friction stir spot welding, J. Manuf. Process., 24(2016), p. 307. doi: 10.1016/j.jmapro.2016.09.011
    [18]
    K.P. Mehta, R. Patel, H. Vyas, S. Memon, and P. Vilaça, Repairing of exit-hole in dissimilar Al–Mg friction stir welding: Process and microstructural pattern, Manuf. Lett., 23(2020), p. 67. doi: 10.1016/j.mfglet.2020.01.002
    [19]
    K. Mehta, A. Astarita, P. Carlone, et al., Investigation of exit-hole repairing on dissimilar aluminum–copper friction stir welded joints, J. Mater. Res. Technol., 13(2021), p. 2180. doi: 10.1016/j.jmrt.2021.06.019
    [20]
    D.F. Metz, E.R. Weishaupt, M.E. Barkey, and B.S. Fairbee, A microstructure and microhardness characterization of a friction plug weld in friction stir welded 2195 Al–Li, J. Eng. Mater. Technol., 134(2012), No. 2, art. No. 021005. doi: 10.1115/1.4006066
    [21]
    D.F. Metz and M.E. Barkey, Fatigue behavior of friction plug welds in 2195 Al–Li alloy, Int. J. Fatigue, 43(2012), p. 178. doi: 10.1016/j.ijfatigue.2012.04.002
    [22]
    B. Du, Z.P. Sun, X.Q. Yang, L. Cui, J.L. Song, and Z.P. Zhang, Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: Weld formation, microstructure and mechanical property, Mater. Sci. Eng. A, 654(2016), p. 21. doi: 10.1016/j.msea.2015.12.019
    [23]
    G.Q. Wang, G. Zhao, Y.F. Hao, X.F. Chen, and Y.H. Zhao, Technique for repairing keyhole defect for FSW joint of 2219 aluminium alloy, Aerosp. Mater. Technol., 42(2012), No. 3, p. 24.
    [24]
    L.P. Deng, S.H. Li, L.M. Ke, J.H. Liu, and J.D. Kang, Microstructure and fracture behavior of refill friction stir spot welded joints of AA2024 using a novel refill technique, Metals, 9(2019), No. 3, art. No. 286. doi: 10.3390/met9030286
    [25]
    T. Rosendo, B. Parra, M.A.D. Tier, et al., Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy, Mater. Des., 32(2011), No. 3, p. 1094. doi: 10.1016/j.matdes.2010.11.017
    [26]
    Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, and Y.H. Yin, Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy, Mater. Des., 54(2014), p. 766. doi: 10.1016/j.matdes.2013.08.021
    [27]
    P. Zhang, C. Chen, C.W. Zhang, et al., Novel technique of friction extrusion self-refilling for repairing keyhole of flat clinched joint, Int. J. Mech. Sci., 233(2022), art. No. 107658. doi: 10.1016/j.ijmecsci.2022.107658
    [28]
    Y. Tozaki, Y. Uematsu, and K. Tokaji, A newly developed tool without probe for friction stir spot welding and its performance, J. Mater. Process. Technol., 210(2010), No. 6-7, p. 844. doi: 10.1016/j.jmatprotec.2010.01.015
    [29]
    O.O. Oladimeji, E. Taban, and E. Kaluc, Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds, Mater. Des., 108(2016), p. 518. doi: 10.1016/j.matdes.2016.07.013
    [30]
    Q. Chu, W.Y. Li, H.L. Hou, et al., On the double-side probeless friction stir spot welding of AA2198 Al–Li alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 784. doi: 10.1016/j.jmst.2018.10.027
    [31]
    T.P. Saju and R.G. Narayanan, Dieless friction stir extrusion joining of aluminum alloy sheets with a pinless stir tool by controlling tool plunge depth, J. Mater. Process. Technol., 276(2020), art. No. 116416. doi: 10.1016/j.jmatprotec.2019.116416
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(532) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return