Haoyan Sun, Zheng Zou, Meiju Zhang, and Dong Yan, Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-022-2576-3
Cite this article as:
Haoyan Sun, Zheng Zou, Meiju Zhang, and Dong Yan, Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-022-2576-3
Research Article

Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction

+ Author Affiliations
  • Corresponding author:

    Haoyan Sun    E-mail: sunhaoyan@ipe.ac.cn

  • Received: 29 September 2022Revised: 9 November 2022Accepted: 24 November 2022Available online: 25 November 2022
  • Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore. However, the reduction roasting of siderite (FeCO3) generates weakly magnetic wüstite, thus reducing iron recovery via weak magnetic separation. We systematically studied and proposed the fluidized preoxidation–low-temperature reduction magnetization roasting process for siderite. We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550°C due to the unstable intermediate product magnetite (Fe3O4). Stable magnetite can be obtained through maghemite reduction only at low temperature. The optimal fluidized magnetization roasting parameters included preoxidation at 610°C for 2.5 min, followed by reduction at 450°C for 5 min. For roasted ore, weak magnetic separation yielded an iron ore concentrate grade of 62.0wt% and an iron recovery rate of 88.36%. Compared with that of conventional direct reduction magnetization roasting, the iron recovery rate of weak magnetic separation had greatly improved by 34.33%. The proposed fluidized preoxidation–low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore.
  • loading
  • [1]
    World Steel Association, 2022 World Steel in Figures, World Steel Association, 2022.
    J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1231. doi: 10.1007/s12613-019-1868-8
    S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
    Y.J. Li, Q. Zhang, S. Yuan, and H. Yin, High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation, Powder Technol., 379(2021), p. 466. doi: 10.1016/j.powtec.2020.10.005
    X.R. Zhu, Y.X. Han, Y.S. Sun, P. Gao, and Y.J. Li, Thermal decomposition of siderite ore in different flowing atmospheres: Phase transformation and magnetism, Miner. Process. Extr. Metall. Rev., (2022), p. 1.
    V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores, Miner. Eng., 122(2018), p. 277. doi: 10.1016/j.mineng.2018.04.018
    Q. Zhang, Y.S. Sun, Y.X. Han, and Y.J. Li, Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting, J. Clean. Prod., 268(2020), art. No. 122173. doi: 10.1016/j.jclepro.2020.122173
    Y.H. Luo, D.Q. Zhu, J. Pan, and X.L. Zhou, Thermal decomposition behaviour and kinetics of Xinjiang siderite ore, Miner. Process. Extr. Metall., 125(2016), No. 1, p. 17. doi: 10.1080/03719553.2015.1118213
    Y.J. Li, G. Yang, R.C. Zhao, Y.X. Han, and S. Yuan, Feature of refractory iron ore containing siderite and its research trends of beneficiation technology, Multipurp. Util. Miner. Resour., 2015, No. 2, p. 12.
    C.Q. Hu, Y.F. He, D.F. Liu, et al., Advances in mineral processing technologies related to iron, magnesium, and lithium, Rev. Chem. Eng., 36(2019), No. 1, p. 107. doi: 10.1515/revce-2017-0053
    Z.D. Tang, H.X. Xiao, Y.S. Sun, P. Gao, and Y.H. Zhang, Exploration of hydrogen-based suspension magnetization roasting for refractory iron ore towards a carbon-neutral future: A pilot-scale study, Int. J. Hydrogen Energy, 47(2022), No. 33, p. 15074. doi: 10.1016/j.ijhydene.2022.02.219
    S. Yuan, R.F. Wang, P. Gao, Y.X. Han, and Y.J. Li, Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals, Powder Technol., 396(2022), p. 80. doi: 10.1016/j.powtec.2021.10.048
    X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16. doi: 10.1016/j.powtec.2019.04.042
    X.Y. Liu, Y.F. Yu, and W. Chen, Research on flash magnetizing roasting-magnetic separation for Daxigou siderite, Met. Mine, 39(2009), No. 10, p. 84.
    Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.
    A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li, Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed, Metall. Mater. Trans. B, 49(2018), No. 2, p. 846. doi: 10.1007/s11663-018-1193-z
    H.M. Na, J.C. Sun, Z.Y. Qiu, et al., A novel evaluation method for energy efficiency of process industry–A case study of typical iron and steel manufacturing process, Energy, 233(2021), art. No. 121081. doi: 10.1016/j.energy.2021.121081
    J.W. Yu, Y.F. Li, Y. Lv, Y.X. Han, and P. Gao, Recovery of iron from high-iron red mud using suspension magnetization roasting and magnetic separation, Miner. Eng., 178(2022), art. No. 107394. doi: 10.1016/j.mineng.2022.107394
    Z.D. Tang, Q. Zhang, Y.S. Sun, P. Gao, and Y.X. Han, Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resour. Conserv. Recycl., 172(2021), art. No. 105680. doi: 10.1016/j.resconrec.2021.105680
    S. Yuan, W.T. Zhou, Y.X. Han, and Y.J. Li, Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation, J. Mater. Cycles Waste Manage., 22(2020), No. 4, p. 1152. doi: 10.1007/s10163-020-01009-2
    Z.D. Tang, P. Gao, Y.J. Li, et al., Recovery of iron from hazardous tailings using fluidized roasting coupling technology, Powder Technol., 361(2020), p. 591. doi: 10.1016/j.powtec.2019.11.074
    M. Gheisari, M. Mozaffari, M. Acet, and J. Amighian, Preparation and investigation of magnetic properties of wüstite nanoparticles, J. Magn. Magn. Mater., 320(2008), No. 21, p. 2618. doi: 10.1016/j.jmmm.2008.05.028
    S. Yuan, H.X. Xiao, T.Y. Yu, Y.J. Li, and P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol., 372(2020), p. 1. doi: 10.1016/j.powtec.2020.05.112
    V.P. Ponomar, M.M. Bagmut, E.A. Kalinichenko, and A.B. Brik, Experimental study on oxidation of synthetic and natural magnetites monitored by magnetic measurements, J. Alloys Compd., 848(2020), art. No. 156374. doi: 10.1016/j.jallcom.2020.156374
    W. Kim, C.Y. Suh, S.W. Cho, et al., A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique, Talanta, 94(2012), p. 348. doi: 10.1016/j.talanta.2012.03.001
    F.J. Gotor, M. Macías, A. Ortega, and J.M. Criado, Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples, Phys. Chem. Min., 27(2000), No. 7, p. 495. doi: 10.1007/s002690000093
    H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426(2017), p. 74. doi: 10.1016/j.jmmm.2016.11.033
    B. Weiss, J. Sturn, F. Winter, and J.L. Schenk, Empirical reduction diagrams for reduction of iron ores with H2 and CO gas mixtures considering non-stoichiometries of oxide phases, Ironmaking Steelmaking, 36(2009), No. 3, p. 212. doi: 10.1179/174328108X380645
    V.P. Romanov, L.F. Checherskaya, and P.A. Tatsienko, Peculiarities of wustite formed below 570℃, Phys. Status Solidi A, 15(1973), No. 2, p. 721. doi: 10.1002/pssa.2210150244
    A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
    P.K. Gallagher and S. St J Warne, Thermomagnetometry and thermal decomposition of siderite, Thermochim. Acta, 43(1981), No. 3, p. 253. doi: 10.1016/0040-6031(81)85183-0
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(135) PDF Downloads(20) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint