Tichen Wang, Guiju Sun, Jiushuai Deng, Hongxiang Xu, Guoyong Wang, Mingzhen Hu, Qizheng Qin, and Xiaohao Sun, A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-022-2586-1
Cite this article as:
Tichen Wang, Guiju Sun, Jiushuai Deng, Hongxiang Xu, Guoyong Wang, Mingzhen Hu, Qizheng Qin, and Xiaohao Sun, A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-022-2586-1
Research Article

A depressant for marmatite flotation: Synthesis, characterisation and floatation performance

+ Author Affiliations
  • Corresponding authors:

    Jiushuai Deng    E-mail: dengshuai689@163.com

    Hongxiang Xu    E-mail: 201535@cumtb.edu.cn

  • Received: 21 February 2022Revised: 6 December 2022Accepted: 9 December 2022Available online: 10 December 2022
  • This study synthesised a zincic salt (ZS) as a depressant for marmatite–galena separation. The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests. 88.89% of the galena was recovered and 83.39% of the marmatite was depressed with ZS dosage of 750 mg·L−1 at pH = 4. The depression mechanism of ZS on marmatite was investigated by a variety of techniques, including adsorption measurements, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopic (XPS) analysis, and time of flight secondary ion mass spectrometry (ToF-SIMS). Results of adsorption tests and FTIR reveal that ZS adsorbed on marmatite surface and impeded the subsequent adsorption of butyl xanthate (BX). The results of XPS and ToF-SIMS indicate that the $ {\mathrm{Z}\mathrm{n}\mathrm{O}}_{2}^{2-} $ released by ZS could be chemisorbed on the marmatite surface and depress marmatite flotation.
  • loading
  • [1]
    H. Lai, J.S. Deng, G.X. Fan, et al., Mechanism study of xanthate adsorption on sphalerite/marmatite surfaces by ToF-SIMS analysis and flotation, Minerals, 9(2019), No. 4, art. No. 205. doi: 10.3390/min9040205
    Y. Chen, J.H. Chen, and J. Guo, A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite, Miner. Eng., 23(2010), No. 14, p. 1120. doi: 10.1016/j.mineng.2010.07.005
    S.M. Wen, J. Liu, and J.S. Deng, Interactions among components of fluid inclusions in sulfide mineral, mineral surfaces, and collectors, [in] Fluid Inclusion Effect in Flotation of Sulfide Minerals, Elsevier, Amsterdam, 2021, p. 179.
    J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
    B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
    W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446. doi: 10.1007/s12613-021-2321-3
    B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142. doi: 10.1016/j.mineng.2019.106142
    X. Zhang, M.Z. Huangfu, J.S. Deng, et al., Surface characteristics and flotation behaviours of specularite as influenced by lead ion modification, Sep. Purif. Technol., 276(2021), art. No. 119384. doi: 10.1016/j.seppur.2021.119384
    W.Y. Cui, Y.C. Liu, L.X. Liang, and J.H. Chen, Cyanide-free separation of high pyrrhotite Zn–S bulk concentrate, Miner. Eng., 170(2021), art. No. 107052. doi: 10.1016/j.mineng.2021.107052
    X.R. Zhang, W. Xiong, L. Lu, et al., A novel synthetic polymer depressant for the flotation separation of chalcopyrite and galena and insights into its interfacial adsorption mechanism, Sep. Purif. Technol., 279(2021), art. No. 119658. doi: 10.1016/j.seppur.2021.119658
    J. Wang, Q. Zhang, Y.Q. Qiu, L.J. Li, J.J. Ye, and W.Y. Cui, The first principles of the crystal structure and active sites of calcite, Chin. J. Eng., 39(2017), No. 4, p. 487.
    S.D. Zhang, Z.B. Deng, X. Xie, and X. Tong, Study on the depression mechanism of calcium on the flotation of high-iron sphalerite under a high-alkalinity environment, Miner. Eng., 160(2021), art. No. 106700. doi: 10.1016/j.mineng.2020.106700
    R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Surface chemical study of the selective separation of chalcopyrite and marmatite, Min. Sci. Technol. China, 20(2010), No. 4, p. 542. doi: 10.1016/S1674-5264(09)60240-4
    X.Z. Bu, F.F. Chen, W. Chen, and Y.H. Ding, The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system, Appl. Surf. Sci., 479(2019), p. 303. doi: 10.1016/j.apsusc.2019.02.113
    W.Q. Qin, F. Jiao, W. Sun, et al., Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties, Colloids Surf. A, 421(2013), p. 181. doi: 10.1016/j.colsurfa.2013.01.009
    W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
    J.S. Deng, Z.Y. Bai, B. Zhao, et al., Opportunities and challenges in microwave absorption of nickel–carbon composites, Phys. Chem. Chem. Phys., 23(2021), No. 37, p. 20795. doi: 10.1039/D1CP03522C
    Q. Wei, F. Jiao, L.Y. Dong, X.D. Liu, and W.Q. Qin, Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation, Trans. Nonferrous Met. Soc. China, 31(2021), No. 6, p. 1784. doi: 10.1016/S1003-6326(21)65616-9
    J. Liu, J.M. Hao, W.C. Dong, and Y. Zeng, Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu–Zn sulfide, Colloids Surf. A, 615(2021), art. No. 126290. doi: 10.1016/j.colsurfa.2021.126290
    H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Effect of copper ions on surface properties of ZnSO4-depressed sphalerite and its response to flotation, Sep. Purif. Technol., 228(2019), art. No. 115756. doi: 10.1016/j.seppur.2019.115756
    Y. Jia, Y. Zhang, Y.G. Huang, L.L. Chen, M. Wang, and Y.L. Zhang, Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite, Appl. Surf. Sci., 569(2021), art. No. 151055. doi: 10.1016/j.apsusc.2021.151055
    Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci., 425(2017), p. 8. doi: 10.1016/j.apsusc.2017.07.017
    H.L. Li, W.N. Xu, F.F. Jia, J.B. Li, S.X. Song, and Y. Nahmad, Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 857. doi: 10.1007/s12613-020-2078-0
    H. Wang, S.M. Wen, G. Han, L. Xu, and Q.C. Feng, Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate, Miner. Eng., 146(2020), art. No. 106132. doi: 10.1016/j.mineng.2019.106132
    J.S. Deng, H. Lai, M. Chen, et al., Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study, Miner. Eng., 136(2019), p. 168. doi: 10.1016/j.mineng.2019.02.012
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(82) PDF Downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint