Arun David, Satheesh Kumar Gopal, Poovazhagan Lakshmanan, and Amith Sukumaran Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1140-1151. https://doi.org/10.1007/s12613-022-2592-3
Cite this article as:
Arun David, Satheesh Kumar Gopal, Poovazhagan Lakshmanan, and Amith Sukumaran Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1140-1151. https://doi.org/10.1007/s12613-022-2592-3
Research Article

Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments

+ Author Affiliations
  • Corresponding author:

    Satheesh Kumar Gopal    E-mail: satheeshkumarg@ssn.edu.in

  • Received: 28 September 2022Revised: 10 December 2022Accepted: 25 December 2022Available online: 27 December 2022
  • The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection, such as leakage, crack, gas, and corrosion detection, which are standard applications common in the current industrial scenario. The question that is frequently overlooked in all these cases is the inherent resistance of the robots to corrosion. The mechanical, microstructural, and corrosion properties of aluminum 7075 incorporated with various weight percentages (0, 0.5wt%, 1wt%, and 1.5wt%) of carbon nanotubes (CNTs) are discussed. It is fabricated using a rotational ultrasonication with mechanical stirring (RUMS)-based casting method for improved corrosion resistance without compromising the mechanical properties of the robot. 1wt% CNTs–aluminum nanocomposite shows good corrosion and mechanical properties, meeting the requirements imposed by the sewage environment of the robot.
  • loading
  • Supplementary Information-s12613-022-2592-3.docx
  • [1]
    R.K. Bhushan and S. Kumar, Influence of SiC particles distribution and their weight percentage on 7075 Al alloy, J. Mater. Eng. Perform., 20(2011), No. 2, p. 317. doi: 10.1007/s11665-010-9681-6
    [2]
    A. Kalkanlı and S. Yılmaz, Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates, Mater. Des., 29(2008), No. 4, p. 775. doi: 10.1016/j.matdes.2007.01.007
    [3]
    S.M. Choi and H. Awaji, Nanocomposites–A new material design concept, Sci. Technol. Adv. Mater., 6(2005), No. 1, p. 2. doi: 10.1016/j.stam.2004.06.002
    [4]
    S. Gopalakannan and T. Senthilvelan, Synthesis and characterisation of Al7075 reinforced with SiC and B4C nano particles fabricated by ultrasonic cavitation method, J. Sci. Ind. Res., 74(2015), No. 5, p. 281.
    [5]
    M. Imran and A.R.A. Khan, Characterization of Al-7075 metal matrix composites: A review, J. Mater. Res. Technol., 8(2019), No. 3, p. 3347. doi: 10.1016/j.jmrt.2017.10.012
    [6]
    A. Baradeswaran and A.E. Perumal, Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites, Composites Part B, 56(2014), p. 464. doi: 10.1016/j.compositesb.2013.08.013
    [7]
    A. Baradeswaran and A.E. Perumal, Wear and mechanical characteristics of Al7075/graphite composites, Composites Part B, 56(2014), p. 472. doi: 10.1016/j.compositesb.2013.08.073
    [8]
    A.I. Khdair and A. Fathy, Enhanced strength and ductility of Al–SiC nanocomposites synthesized by accumulative roll bonding, J. Mater. Res. Technol., 9(2020), No. 1, p. 478. doi: 10.1016/j.jmrt.2019.10.077
    [9]
    G.B.V. Kumar, C.S.P. Rao, N. Selvaraj, and M.S. Bhagyashekar, Studies on Al6061–SiC and Al7075–Al2O3 metal matrix composites, J. Miner. Mater. Charact. Eng., 9(2010), No. 1, p. 43.
    [10]
    M.H. Jokhio, M.I. Panhwer, and M.A. Unar, Manufacturing of aluminum composite material using stir casting process, Mehran Uni. Res. J. Eng. Technol., 30(2016), No. 1, p. 53.
    [11]
    A. Pardo, M.C. Merino, S. Merino, F. Viejo, M. Carboneras, and R. Arrabal, Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp), Corros. Sci., 47(2005), No. 7, p. 1750. doi: 10.1016/j.corsci.2004.08.010
    [12]
    G.M. Pinto, N. Nayak, and A. Nityananda Shetty, Corrosion behaviour of 6061 Al–15vol. Pct. SiC composite and its base alloy in a mixture of 1 : 1 hydrochloric and sulphuric acid medium, Int. J. Electrochem. Sci., 4(2009), No. 10, p. 1452.
    [13]
    F. Toptan, A.C. Alves, I. Kerti, E. Ariza, and L.A. Rocha, Corrosion and tribocorrosion behaviour of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution, Wear, 306(2013), No. 1-2, p. 27. doi: 10.1016/j.wear.2013.06.026
    [14]
    S. Candan, An investigation on corrosion behaviour of pressure infiltrated Al–Mg alloy/SiCp composites, Corros. Sci., 51(2009), No. 6, p. 1392. doi: 10.1016/j.corsci.2009.03.025
    [15]
    J.F Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, and Z.Q. Zheng, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments, Trans. Nonferrous Met. Soc. China, 18(2008), No. 4, p. 755. doi: 10.1016/S1003-6326(08)60130-2
    [16]
    P. Liu, S.E. Yang, Y.S. Chen, et al., Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects, Ceram. Int., 46(2020), No. 12, p. 19655. doi: 10.1016/j.ceramint.2020.05.067
    [17]
    Y. Zhang, Q. Wang, G. Chen, and C.S. Ramachandran, Mechanical, tribological and corrosion physiognomies of CNT–Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process, Surf. Coat. Technol., 403(2020), art. No. 126380. doi: 10.1016/j.surfcoat.2020.126380
    [18]
    B. Chen, K. Kondoh, J. S. Li, and M. Qian, Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in situ alumina nanoparticles, Composites Part B, 183(2020), art. No. 107691. doi: 10.1016/j.compositesb.2019.107691
    [19]
    T. Laha, A. Agarwal, T. McKechnie, and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A, 381(2004), No. 1-2, p. 249. doi: 10.1016/j.msea.2004.04.014
    [20]
    A. Rutkowska, T.M. Bawazeer, J.V. Macpherson, and P.R. Unwin, Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT–CNT–UMEs), Phys. Chem. Chem. Phys., 13(2011), No. 12, p. 5223. doi: 10.1039/c0cp02804e
    [21]
    C.F. Deng, X.X. Zhang, D.Z. Wang, Q. Lin, and A.B. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater. Lett., 61(2007), No. 8-9, p. 1725. doi: 10.1016/j.matlet.2006.07.119
    [22]
    C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A, 444(2007), No. 1-2, p. 138. doi: 10.1016/j.msea.2006.08.057
    [23]
    S.I. Ghazanlou and B. Eghbali, Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through the stir casting process, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1204. doi: 10.1007/s12613-020-2101-5
    [24]
    I. Sridhar and K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites, J. Mater. Sci., 44(2009), No. 7, p. 1750. doi: 10.1007/s10853-009-3290-5
    [25]
    C. Kannan and R. Ramanujam, Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting, J. Adv. Res., 8(2017), No. 4, p. 309. doi: 10.1016/j.jare.2017.02.005
    [26]
    T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Compos. A Appl. Sci. Manuf., 40(2009), No. 5, p. 589. doi: 10.1016/j.compositesa.2009.02.007
    [27]
    V.V. Shanbhag, N.N. Yalamoori, S. Karthikeyan, R. Ramanujam, and K. Venkatesan, Fabrication, surface morphology and corrosion investigation of Al7075–Al2O3 matrix composite in sea water and industrial environment, Procedia Eng., 97(2014), p. 607. doi: 10.1016/j.proeng.2014.12.289
    [28]
    S.C. Amith and P. Lakshmanan, Effects of simultaneous rotational ultrasonication and vortex-induced casting technique on particle distribution and grain refinement in AA7075/h-BN nanocomposites, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 236(2022), No. 8, p. 1648.
    [29]
    B. Abbasipour, B. Niroumand, S.M. Monir Vaghefi, and M. Abedi, Tribological behavior of A356–CNT nanocomposites fabricated by various casting techniques, Trans. Nonferrous Met. Soc. China, 29(2019), No. 10, p. 1993. doi: 10.1016/S1003-6326(19)65107-1
    [30]
    H. Liao, Y. Sun, and G. Sun, Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium, Mater. Sci. Eng. A, 335(2002), No. 1-2, p. 62. doi: 10.1016/S0921-5093(01)01949-9
    [31]
    G. Anne, M.R. Ramesh, S.B. Arya, and S. Sahu, Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg–2%Zn/Al-7075 multilayered composite, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1726. doi: 10.1007/s11665-017-2576-z
    [32]
    A.P. Mouritz, Introduction to Aerospace Materials, Amsterdam: Elsevier, 2012.
    [33]
    K. Mohan, J.A. Suresh, P. Ramu, and R. Jayaganthan, Microstructure and mechanical behavior of Al7075–T6 subjected to shallow cryogenic treatment, J. Mater. Eng. Perform., 25(2016), No. 6, p. 2185. doi: 10.1007/s11665-016-2052-1
    [34]
    N. Yazdian, F. Karimzadeh, and M. Tavoosi, Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing, J. Alloys Compd., 493(2010), No. 1-2, p. 137. doi: 10.1016/j.jallcom.2009.12.144
    [35]
    H. Hashim, M.S. Salleh, M.Z. Omar, and A.B. Sulong, Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method, J. Mater. Res. Technol., 8(2019), No. 2, p. 2223. doi: 10.1016/j.jmrt.2019.02.008
    [36]
    F. Barati and M. Esfandiari, The effect of multi-walled carbon nanotubes, as the reinforcement phase, on the hardness and bending strength of aluminum alloy 7075, J. Stress Anal., 6(2021), No. 1, p. 61.
    [37]
    H. Puga, V.H. Carneiro, J. Barbosa, and D. Soares, Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys, Met. Mater. Int., 22(2016), No. 5, p. 863. doi: 10.1007/s12540-016-6073-y
    [38]
    A. Kumar, K. Pal, and S. Mula, Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075–2% SiC micro- and nanocomposites by friction stir processing, J. Manuf. Process., 30(2017), p. 1. doi: 10.1016/j.jmapro.2017.09.005
    [39]
    R.A. Manikandan and T.V. Arjunan, Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite, Composites Part B, 183(2020), art. No. 107668. doi: 10.1016/j.compositesb.2019.107668
    [40]
    P. Samal, P.R. Vundavilli, A. Meher, and M.M. Mahapatra, Reinforcing effect of multi-walled carbon nanotubes on microstructure and mechanical behavior of AA5052 composites assisted by in situ TiC particles, Ceram. Int., 48(2022), No. 6, p. 8245. doi: 10.1016/j.ceramint.2021.12.029
    [41]
    X.F. Wang, M.X. Guo, C.Q. Ma, J.B. Chen, J.S. Zhang, and L.Z. Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 957. doi: 10.1007/s12613-018-1645-0
    [42]
    S. Suresh, G.H Gowd, and M.L. Deva Kumar, Mechanical properties of AA 7075/Al2O3/SiC nano-metal matrix composites by stir-casting method, J. Inst. Eng. India Ser. D, 100(2019), No. 1, p. 43. doi: 10.1007/s40033-019-00178-1
    [43]
    A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Mater., 107(2016), p. 424. doi: 10.1016/j.actamat.2015.12.034
    [44]
    H.A Deore, J. Mishra, A.G. Rao, H. Mehtani, and V.D. Hiwarkar, Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites, Surf. Coat. Technol., 374(2019), p. 52. doi: 10.1016/j.surfcoat.2019.05.048
    [45]
    B. Zhou, B. Liu, S.G. Zhang, R. Lin, Y. Jiang, and X.Y. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties, J. Alloys Compd., 879(2021), art. No. 160407. doi: 10.1016/j.jallcom.2021.160407
    [46]
    F. Andreatta, H. Terryn, and J.H.W. De Wit, Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075–T6, Corros. Sci., 45(2003), No. 8, p. 1733. doi: 10.1016/S0010-938X(03)00004-0
    [47]
    M. Navaser and M. Atapour, Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy, J. Mater. Sci. Technol., 33(2017), No. 2, p. 155. doi: 10.1016/j.jmst.2016.07.008
    [48]
    J. Halambek, M.C. Bubalo, I.R. Redovniković, and K. Berković, Corrosion behaviour of aluminium and AA5754 alloy in 1% acetic acid solution in presence of laurel oil, Int. J. Electrochem. Sci, 9(2014), No. 10, p. 5496.
    [49]
    K.S. Ghosh, S. Mukhopadhyay, B. Konar, and B. Mishra, Study of aging and electrochemical behaviour of Al–Li–Cu–Mg alloys, Mater. Corros., 64(2013), No. 10, p. 890. doi: 10.1002/maco.201106409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(354) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return