Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang, and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1922-1932. https://doi.org/10.1007/s12613-023-2624-7
Cite this article as:
Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang, and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1922-1932. https://doi.org/10.1007/s12613-023-2624-7
Research Article

Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater

+ Author Affiliations
  • Corresponding authors:

    Bowei Zhang    E-mail: bwzhang@ustb.edu.cn

    Junsheng Wu    E-mail: wujs@ustb.edu.cn

    Yizhong Huang    E-mail: YZHuang@ntu.edu.sg

  • Received: 13 November 2022Revised: 5 March 2023Accepted: 6 March 2023Available online: 9 March 2023
  • Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy. Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts. Avoiding the use of intricate instruments, corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance. An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method, which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction (OER) in alkaline seawater. Notably, the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and 100 mA·cm−2, respectively. The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.
  • loading
  • Supplementary Information-10.1007s12613-023-2624-7.docx
  • [1]
    F. Yu, H.Q. Zhou, Y.F. Huang, et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun., 9(2018), No. 1, art. No. 2551. doi: 10.1038/s41467-018-04746-z
    [2]
    K. Rennings, B. Brohmann, J. Nentwich, J. Schleich, T. Traber, and R. Wüstenhagen, Sustainable Energy Consumption in Residential Buildings, Springer Science, Berlin, 2012.
    [3]
    J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
    [4]
    C.J. Winter, Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change, Int. J. Hydrogen Energy, 34(2009), No. 14, p. S1. doi: 10.1016/j.ijhydene.2009.05.063
    [5]
    Z.P. Wu, X.F. Lu, S.Q. Zang, and X. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910274. doi: 10.1002/adfm.201910274
    [6]
    M.Y. Wang, Z. Wang, X.Z. Gong, and Z.C. Guo, The intensification technologies to water electrolysis for hydrogen production-A review, Renewable Sustainable Energy Rev., 29(2014), p. 573. doi: 10.1016/j.rser.2013.08.090
    [7]
    S. Dresp, F. Dionigi, M. Klingenhof, and P. Strasser, Direct electrolytic splitting of seawater: Opportunities and challenges, ACS Energy Lett., 4(2019), No. 4, p. 933. doi: 10.1021/acsenergylett.9b00220
    [8]
    S.C. Ke, R. Chen, G.H. Chen, and X.L. Ma, Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives, Energy Fuels, 35(2021), No. 16, p. 12948. doi: 10.1021/acs.energyfuels.1c02056
    [9]
    L. Yu, Q. Zhu, S.W. Song, et al., Non-noble metal–nitride based electrocatalysts for high-performance alkaline seawater electrolysis, Nat. Commun., 10(2019), No. 1, art. No. 5106. doi: 10.1038/s41467-019-13092-7
    [10]
    F. Song, L.C. Bai, A. Moysiadou, et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance, J. Am. Chem. Soc., 140(2018), No. 25, p. 7748. doi: 10.1021/jacs.8b04546
    [11]
    W.M. Tong, M. Forster, F. Dionigi, et al., Electrolysis of low-grade and saline surface water, Nat. Energy, 5(2020), No. 5, p. 367. doi: 10.1038/s41560-020-0550-8
    [12]
    T. Okada, H. Abe, A. Murakami, et al., A bilayer structure composed of Mg|Co–MnO2 deposited on a Co(OH)2 film to realize selective oxygen evolution from chloride-containing water, Langmuir, 36(2020), No. 19, p. 5227. doi: 10.1021/acs.langmuir.0c00547
    [13]
    S. Gupta, M. Forster, A. Yadav, A.J. Cowan, N. Patel, and M. Patel, Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions, ACS Appl. Energy Mater., 3(2020), No. 8, p. 7619. doi: 10.1021/acsaem.0c01040
    [14]
    F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, and P. Strasser, Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis, ChemSusChem, 9(2016), No. 9, p. 962. doi: 10.1002/cssc.201501581
    [15]
    G.B. Liu, Y.S. Xu, T. Yang, and L.H. Jiang, Recent advances in electrocatalysts for seawater splitting, Nano Mater. Sci., 5(2023), No. 1, p. 101. doi: 10.1016/j.nanoms.2020.12.003
    [16]
    J.E. Bennett, Electrodes for generation of hydrogen and oxygen from seawater, Int. J. Hydrogen Energy, 5(1980), No. 4, p. 401. doi: 10.1016/0360-3199(80)90021-X
    [17]
    J. Geng, L. Kuai, E.J. Kan, Q. Wang, and B.Y. Geng, Precious-metal-free Co–Fe–O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route, ChemSusChem, 8(2015), No. 4, p. 659. doi: 10.1002/cssc.201403222
    [18]
    Y. Zhou, S.Q. Xi, X.G. Yang, and H.J. Wu, In situ hydrothermal growth of metallic Co9S8–Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions, J. Solid State Chem., 270(2019), p. 398. doi: 10.1016/j.jssc.2018.12.004
    [19]
    Z.J. Du, D.H. Xiong, S.K. Verma, et al., A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions, Inorg. Chem. Front., 5(2018), No. 1, p. 183. doi: 10.1039/C7QI00621G
    [20]
    J.Z. Huang, J.C. Han, R. Wang, et al., Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis, ACS Energy Lett., 3(2018), No. 7, p. 1698. doi: 10.1021/acsenergylett.8b00888
    [21]
    D.H. Youn, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang, and J.S. Lee, One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation, J. Power Sources, 294(2015), p. 437. doi: 10.1016/j.jpowsour.2015.06.098
    [22]
    W.X. Zhu, T.S. Zhang, Y. Zhang, et al., A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy, Appl. Catal. B, 244(2019), p. 844. doi: 10.1016/j.apcatb.2018.12.021
    [23]
    S.M. Saha and A.K. Ganguli, FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER), ChemistrySelect, 2(2017), No. 4, p. 1630. doi: 10.1002/slct.201601243
    [24]
    T.T. Liu, Y.H. Liang, Q. Liu, X.P. Sun, Y.Q. He, and A.M. Asiri, Electrodeposition of cobalt–sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction, Electrochem. Commun., 60(2015), p. 92. doi: 10.1016/j.elecom.2015.08.011
    [25]
    Q. Liu, S. Gu, and C.M. Li, Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water, J. Power Sources, 299(2015), p. 342. doi: 10.1016/j.jpowsour.2015.09.027
    [26]
    T. Wang, W.C. Xu, and H.X. Wang, Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction, Electrochim. Acta, 257(2017), p. 118. doi: 10.1016/j.electacta.2017.10.074
    [27]
    X.T. Feng, Q.Z. Jiao, H.R. Cui, et al., One-pot synthesis of NiCo2S4 hollow spheres via sequential ion-exchange as an enhanced oxygen bifunctional electrocatalyst in alkaline solution, ACS Appl. Mater. Interfaces, 10(2018), No. 35, p. 29521. doi: 10.1021/acsami.8b08547
    [28]
    J.Y. Xia, K. Huang, Z.X. Yao, et al., Ternary duplex FeCoNi alloy prepared by cathode plasma electrolytic deposition as a high-efficient electrocatalyst for oxygen evolution reaction, J. Alloys Compd., 891(2022), art. No. 161934. doi: 10.1016/j.jallcom.2021.161934
    [29]
    F. Wu, Z.X. Yao, K. Huang, et al., Boosting OER activity of stainless steel by cathodic plasma surface modification, J. Mater. Res. Technol., 15(2021), p. 6721. doi: 10.1016/j.jmrt.2021.11.098
    [30]
    X.P. Liu, M.X. Gong, S. Deng, et al., Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting, Adv. Funct. Mater., 31(2021), No. 11, art. No. 2009032. doi: 10.1002/adfm.202009032
    [31]
    H.A. Yang, L.Q. Gong, H.M. Wang, et al., Preparation of nickel–iron hydroxides by microorganism corrosion for efficient oxygen evolution, Nat. Commun., 11(2020), No. 1, art. No. 5075. doi: 10.1038/s41467-020-18891-x
    [32]
    H. Schäfer, D.M. Chevrier, P. Zhang, et al., Electro-oxidation of Ni42 steel: A highly active bifunctional electrocatalyst, Adv. Funct. Mater., 26(2016), No. 35, p. 6402. doi: 10.1002/adfm.201601581
    [33]
    Q. Wang, Y.L. Jia, M.P. Wang, et al., Synthesis of Cu2O nanotubes with efficient photocatalytic activity by electrochemical corrosion method, J. Phys. Chem. C, 119(2015), No. 38, p. 22066. doi: 10.1021/acs.jpcc.5b06213
    [34]
    B. Fei, Z.L. Chen, J.X. Liu, et al., Ultrathinning nickel sulfide with modulated electron density for efficient water splitting, Adv. Energy Mater., 10(2020), No. 41, art. No. 2001963. doi: 10.1002/aenm.202001963
    [35]
    N. Todoroki and T. Wadayama, Heterolayered Ni–Fe hydroxide/oxide nanostructures generated on a stainless-steel substrate for efficient alkaline water splitting, ACS Appl. Mater. Interfaces, 11(2019), No. 47, p. 44161. doi: 10.1021/acsami.9b14213
    [36]
    H. Schäfer, S. Sadaf, L. Walder, et al., Stainless steel made to rust: A robust water-splitting catalyst with benchmark characteristics, Energy Environ. Sci., 8(2015), No. 9, p. 2685. doi: 10.1039/C5EE01601K
    [37]
    X. Shang, Z.Z. Liu, J.Q. Zhang, et al., Electrochemical corrosion engineering for Ni–Fe oxides with superior activity toward water oxidation, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 42217. doi: 10.1021/acsami.8b13267
    [38]
    J. Lee, G.H. Lim, and B. Lim, Nanostructuring of metal surfaces by corrosion for efficient water splitting, Chem. Phys. Lett., 644(2016), p. 51. doi: 10.1016/j.cplett.2015.11.043
    [39]
    X.F. Ren, Y.R. Wang, A.M. Liu, Z.H. Zhang, Q.Y. Lv, and B.H. Liu, Current progress and performance improvement of Pt/C catalysts for fuel cells, J. Mater. Chem. A, 8(2020), No. 46, p. 24284. doi: 10.1039/D0TA08312G
    [40]
    Y. Yan, B.Y. Xia, B. Zhao, and X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting, J. Mater. Chem. A, 4(2016), No. 45, p. 17587. doi: 10.1039/C6TA08075H
    [41]
    S.M. Han, Q.B. Yun, S.Y. Tu, L.J. Zhu, W.B. Cao, and Q.P. Lu, Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution, J. Mater. Chem. A, 7(2019), No. 43, p. 24691. doi: 10.1039/C9TA06178A
    [42]
    H.M. Xu, S.Q. Ci, Y.C. Ding, G.X. Wang, and Z.H. Wen, Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems, J. Mater. Chem. A, 7(2019), No. 14, p. 8006. doi: 10.1039/C9TA00833K
    [43]
    W.S. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), p. 1120. doi: 10.1007/s12613-022-2443-2
    [44]
    Y.N. Guo, T. Park, J.W. Yi, et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting, Adv. Mater., 31(2019), No. 17, art. No. 1807134. doi: 10.1002/adma.201807134
    [45]
    Q.B. Yun, L.X. Li, Z.N. Hu, Q. Lu, B. Chen, and H. Zhang, Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage, Adv. Mater., 32(2020), No. 1, art. No. 1903826. doi: 10.1002/adma.201903826
    [46]
    H.J. Zhang, A.W. Maijenburg, X.P. Li, S.L. Schweizer, and R.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting, Adv. Funct. Mater., 30(2020), No. 34, art. No. 2003261. doi: 10.1002/adfm.202003261
    [47]
    L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
    [48]
    X. Peng, C.R. Pi, X.M. Zhang, S. Li, K.F. Huo, and P.K. Chu, Recent progress of transition metal nitrides for efficient electrocatalytic water splitting, Sustainable Energy Fuels, 3(2019), No. 2, p. 366. doi: 10.1039/C8SE00525G
    [49]
    W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, and Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy Environ. Sci., 8(2015), No. 5, p. 1404. doi: 10.1039/C4EE03869J
    [50]
    M.S. Burke, L.J. Enman, A.S. Batchellor, S.H. Zou, and S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles, Chem. Mater., 27(2015), No. 22, p. 7549. doi: 10.1021/acs.chemmater.5b03148
    [51]
    K.X. Zhang and R.Q. Zou, Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges, Small, 17(2021), No. 37, art. No. 2100129. doi: 10.1002/smll.202100129
    [52]
    H. Xu, H.Y. Shang, C. Wang, and Y.K. Du, Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting, Coord. Chem. Rev., 418(2020), art. No. 213374. doi: 10.1016/j.ccr.2020.213374
    [53]
    J.A. Wang, Y. Gao, H. Kong, et al., Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances, Chem. Soc. Rev., 49(2020), No. 24, p. 9154. doi: 10.1039/D0CS00575D
    [54]
    G.L. Fan, F. Li, D.G. Evans, and X. Duan, Catalytic applications of layered double hydroxides: Recent advances and perspectives, Chem. Soc. Rev., 43(2014), No. 20, p. 7040. doi: 10.1039/C4CS00160E
    [55]
    M. Xu and M. Wei, Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications, Adv. Funct. Mater., 28(2018), No. 47, art. No. 1802943. doi: 10.1002/adfm.201802943
    [56]
    Z.P. Xu, J. Zhang, M.O. Adebajo, H. Zhang, and C.H. Zhou, Catalytic applications of layered double hydroxides and derivatives, Appl. Clay Sci., 53(2011), No. 2, p. 139. doi: 10.1016/j.clay.2011.02.007
    [57]
    S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review, ACS Catal., 6(2016), No. 12, p. 8069. doi: 10.1021/acscatal.6b02479
    [58]
    M. Görlin, P. Chernev, J.F. de Araújo, et al., Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts, J. Am. Chem. Soc., 138(2016), No. 17, p. 5603. doi: 10.1021/jacs.6b00332
    [59]
    P. Babar, A. Lokhande, V. Karade, et al., Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis, ACS Sustainable Chem. Eng., 7(2019), No. 11, p. 10035. doi: 10.1021/acssuschemeng.9b01260
    [60]
    D.M. Jang, I.H. Kwak, E.L. Kwon, et al., Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution, J. Phys. Chem. C, 119(2015), No. 4, p. 1921. doi: 10.1021/jp511561k
    [61]
    Y.Q. Zhang, D.D. Wang, and S.Y. Wang, High-entropy alloys for electrocatalysis: Design, characterization, and applications, Small, 18(2022), No. 7, art. No. 2104339. doi: 10.1002/smll.202104339
    [62]
    N. Kumar Katiyar, K. Biswas, J.W. Yeh, S. Sharma, and C. Sekhar Tiwary, A perspective on the catalysis using the high entropy alloys, Nano Energy, 88(2021), art. No. 106261. doi: 10.1016/j.nanoen.2021.106261
    [63]
    K. Li and W. Chen, Recent progress in high-entropy alloys for catalysts: Synthesis, applications, and prospects, Mater. Today Energy, 20(2021), art. No. 100638. doi: 10.1016/j.mtener.2021.100638
    [64]
    J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, and J.M. Luo, Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction, J. Mater. Sci. Technol., 79(2021), p. 171. doi: 10.1016/j.jmst.2020.10.079
    [65]
    S.Q. Zhao, H.Y. Wu, R. Yin, et al., Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo–(FeCrCoNiAl0.1)Ox heterojunction films, J. Alloys Compd., 868(2021), art. No. 159108. doi: 10.1016/j.jallcom.2021.159108
    [66]
    P.Y. Ma, S.C. Zhang, M.T. Zhang, et al., Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction, Sci. China Mater., 63(2020), p. 2613. doi: 10.1007/s40843-020-1461-2
    [67]
    J. Tang, J.L. Xu, Z.G. Ye, et al., Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution, J. Alloys Compd., 885(2021), art. No. 160995. doi: 10.1016/j.jallcom.2021.160995
    [68]
    Y.E. Xin, S.H. Li, Y.Y. Qian, et al., High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities, ACS Catal., 10(2020), No. 19, p. 11280. doi: 10.1021/acscatal.0c03617
    [69]
    K. Huang, B.W. Zhang, J.S. Wu, et al., Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst, J. Mater. Chem. A, 8(2020), No. 24, p. 11938. doi: 10.1039/D0TA02125C
    [70]
    K. Huang, D.D. Peng, Z.X. Yao, et al., Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER, Chem. Eng. J., 425(2021), art. No. 131533. doi: 10.1016/j.cej.2021.131533
    [71]
    B. Huang, W.H. Xiong, Q.Q. Yang, Z.H. Yao, G.P. Zhang, and M. Zhang, Preparation, microstructure and mechanical properties of multicomponent Ni3Al-bonded cermets, Ceram. Int., 40(2014), No. 9, p. 14073. doi: 10.1016/j.ceramint.2014.05.135
    [72]
    F. Monireh and A. Nasim, NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal–air batteries, J. Electroanal. Chem., 901(2021), art. No. 115797. doi: 10.1016/j.jelechem.2021.115797
    [73]
    J. Yang, A.G. Baker, H.W. Liu, W.N. Martens, and R.L. Frost, Size-controllable synthesis of chromium oxyhydroxide nanomaterials using a soft chemical hydrothermal route, J. Mater. Sci., 45(2010), No. 24, p. 6574. doi: 10.1007/s10853-010-4746-3
    [74]
    L.M. Cao, J.W. Wang, D.C. Zhong, and T.B. Lu, Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction, J. Mater. Chem. A, 6(2018), No. 7, p. 3224. doi: 10.1039/C7TA09734D
    [75]
    D.R. Lide, eds., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2004.
    [76]
    X.Z. Guo, G.Z. Liang, and A.J. Gu, Construction of nickel-doped cobalt hydroxides hexagonal nanoplates for advanced oxygen evolution electrocatalysis, J. Colloid Interface Sci., 553(2019), p. 713. doi: 10.1016/j.jcis.2019.05.072
    [77]
    Q. Zhou, Y.P. Chen, G.Q. Zhao, et al., Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction, ACS Catal., 8(2018), No. 6, p. 5382. doi: 10.1021/acscatal.8b01332
    [78]
    Z.L. Wang, W.J. Liu, Y.M. Hu, et al., Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea, Appl. Catal. B, 272(2020), art. No. 118959. doi: 10.1016/j.apcatb.2020.118959
    [79]
    J.F. Chang, G.Z. Wang, Z.Z. Yang, et al., Dual-doping and synergism toward high-performance seawater electrolysis, Adv. Mater., 33(2021), No. 33, art. No. 2101425. doi: 10.1002/adma.202101425
    [80]
    X. Long, S. Xiao, Z.L. Wang, X.L. Zheng, and S.H. Yang, Co intake mediated formation of ultrathin nanosheets of transition metal LDH–An advanced electrocatalyst for oxygen evolution reaction, Chem. Commun., 51(2015), No. 6, p. 1120. doi: 10.1039/C4CC08856E
    [81]
    X. Long, Z.L. Wang, S. Xiao, Y.M. An, and S.H. Yang, Transition metal based layered double hydroxides tailored for energy conversion and storage, Mater. Today, 19(2016), No. 4, p. 213. doi: 10.1016/j.mattod.2015.10.006
    [82]
    H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 32(2020), No. 3, art. No. 1806326. doi: 10.1002/adma.201806326
    [83]
    B.H. Cui, Z. Hu, C. Liu, et al., Heterogeneous lamellar-edged Fe–Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation, Nano Res., 14(2021), p. 1149. doi: 10.1007/s12274-020-3164-3
    [84]
    C.J. Lyu, J.R. Cheng, K.L. Wu, et al., Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes, Appl. Catal. B, 317(2022), art. No. 121799. doi: 10.1016/j.apcatb.2022.121799
    [85]
    J. Yang, Y.N. Wang, J.E. Yang, et al., Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires, Small, 18(2022), No. 3, art. No. 2106187. doi: 10.1002/smll.202106187
    [86]
    H. Sun, J.K. Sun, Y.Y. Song, et al., Nickel–cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis, ACS Appl. Mater. Interfaces, 14(2022), No. 19, p. 22061. doi: 10.1021/acsami.2c01643
    [87]
    H. Wang, J. Ying, Y.X. Xiao, et al., Ultrafast synthesis of Cu2O octahedrons inlaid in Ni foam for efficient alkaline water/seawater electrolysis, Electrochem. Commun., 134(2022), art. No. 107177. doi: 10.1016/j.elecom.2021.107177
    [88]
    W.J. Yuan, Z.D. Cui, S.L. Zhu, Z.Y. Li, S.L. Wu, and Y.Q. Liang, Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting, Electrochim. Acta, 365(2021), art. No. 137366. doi: 10.1016/j.electacta.2020.137366
    [89]
    Y.H. Wu, Z.N. Tian, S.F. Yuan, et al., Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures, Chem. Eng. J., 411(2021), art. No. 128538. doi: 10.1016/j.cej.2021.128538
    [90]
    Y.C. Li, X.Y. Wu, J.P. Wang, et al., Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting, Electrochim. Acta, 390(2021), art. No. 138833. doi: 10.1016/j.electacta.2021.138833
    [91]
    T. Cui, X.J. Zhai, L.L. Guo, et al., Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis, Chin. J. Catal., 43(2022), No. 8, p. 2202. doi: 10.1016/S1872-2067(22)64093-2
    [92]
    J.P. Sun, J.A. Li, Z.Z. Li, et al., Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis, ACS Sustainable Chem. Eng., 10(2022), No. 30, p. 9980. doi: 10.1021/acssuschemeng.2c02571
    [93]
    Y. Yu, J. Li, J. Luo, et al., Mo-decorated cobalt phosphide nanoarrays as bifunctional electrocatalysts for efficient overall water/seawater splitting, Mater. Today Nano, 18(2022), art. No. 100216. doi: 10.1016/j.mtnano.2022.100216
    [94]
    W.J. Hao, C.Y. Fu, Y.M. Wang, et al., Coupling boron-modulated bimetallic oxyhydroxide with photosensitive polymer enable highly-active and ultra-stable seawater splitting, J. Energy Chem., 75(2022), p. 26. doi: 10.1016/j.jechem.2022.07.042
    [95]
    G. Li, F.S. Li, Y.L. Zhao, et al., Selective electrochemical alkaline seawater oxidation catalyzed by cobalt carbonate hydroxide nanorod arrays with sequential proton-electron transfer properties, ACS Sustainable Chem. Eng., 9(2021), No. 2, p. 905. doi: 10.1021/acssuschemeng.0c07953
    [96]
    S.W. Song, Y.H. Wang, X.X. Liu, et al., Synthesis of Mo-doped NiFe-phosphate hollow bird-nest architecture for efficient and stable seawater electrolysis, Appl. Surf. Sci., 604(2022), art. No. 154588. doi: 10.1016/j.apsusc.2022.154588
    [97]
    Y.S. Park, J.Y. Jeong, M.J. Jang, et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis, J. Energy Chem., 75(2022), p. 127. doi: 10.1016/j.jechem.2022.08.011
    [98]
    X. Cao, E. Johnson, and M. Nath, Expanding multinary selenide based high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition: Case study with Fe–Cu–Co selenides, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9588. doi: 10.1021/acssuschemeng.9b01095
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(575) PDF Downloads(74) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return