Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng, and Xiaogang Li, Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2661-2
Cite this article as:
Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng, and Xiaogang Li, Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2661-2
Research Article

Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method

+ Author Affiliations
  • Received: 28 February 2023Revised: 13 April 2023Accepted: 21 April 2023Available online: 22 April 2023
  • Traditional 3Ni weathering steel cannot fully meet the requirement of offshore engineering development, the design of novel 3Ni steel with the addition of micro-alloy element such as Mn or Nb to enhance the strength has become a trend. In this study, the stress-assisted corrosion behavior of the novel designed high strength 3Ni steel is studied by corrosion big data method. The information of the corrosion process was recorded by using galvanic corrosion current monitoring method. Gradient boosting decision tree (GBDT) machine-learning method was used to mining the corrosion mechanism and the importance of the structure factor was studied. Field exposure tests were held to verify the results calculated by GBDT method. Results depict that GBDT method can be used to effectively study the influence of structural factor on the corrosion process of 3Ni steel. Different mechanism for the addition of Mn and Cu on the stress-assisted corrosion of 3Ni steel suggest that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel in the early stage of corrosion, when the corrosion reaches a stable state, the increase of Mn element content can increase the corrosion rate of 3Ni steel, while Cu reduces the corrosion rate of 3Ni steel. The increase of Mn element content and Cu addition could inhibit the corrosion process in the presence of stress. The corrosion law of outdoor exposure 3Ni steel is consistent with the law based on corrosion big data technology, which verifies the reliability of big data evaluation method and data prediction model selection.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(229) PDF Downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return