Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin,  and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 395-404. https://doi.org/10.1007/s12613-023-2726-2
Cite this article as:
Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin,  and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 395-404. https://doi.org/10.1007/s12613-023-2726-2
Research Article

MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors

+ Author Affiliations
  • Corresponding authors:

    Zhewei Yang    E-mail: yangzhewei@tyut.edu.cn

    Xin Fan    E-mail: xfan@glut.edu.cn

  • Received: 17 February 2023Revised: 12 August 2023Accepted: 15 August 2023Available online: 18 August 2023
  • The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g−1 below 0.2 V at 0.05 A·g−1), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g−1 at 3.2 A·g−1). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg−1, a power density of 6017.1 W·kg−1, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g−1).
  • loading
  • Supplementary Information-s12613-023-2726-2.docx
  • [1]
    X.L. Yi, X.H. Li, J. Zhong, et al., Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode, Adv. Funct. Mater., 32(2022), No. 48, art. No. 2209523. doi: 10.1002/adfm.202209523
    [2]
    C.Y. Wang, T. Liu, X.G. Yang, et al., Fast charging of energy-dense lithium-ion batteries, Nature, 611(2022), No. 7936, p. 485. doi: 10.1038/s41586-022-05281-0
    [3]
    Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
    [4]
    X.D. Wang, R.B. Yu, C. Zhan, W. Wang, and X. Liu, Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 905. doi: 10.1007/s12613-022-2490-8
    [5]
    U. Bhattacharjee, S. Bhowmik, S. Ghosh, and S.K. Martha, Effect of in situ derived sulfur dispersion on dual carbon lithium-ion capacitors, J. Power Sources, 542(2022), art. No. 231768. doi: 10.1016/j.jpowsour.2022.231768
    [6]
    S.Y. Dong, N. Lv, Y.L. Wu, G.Y. Zhu, and X.C. Dong, Lithium-ion and sodium-ion hybrid capacitors: From insertion-type materials design to devices construction, Adv. Funct. Mater., 31(2021), No. 21, art. No. 2100455. doi: 10.1002/adfm.202100455
    [7]
    P. Naskar, D. Kundu, A. Maiti, P. Chakraborty, B. Biswas, and A. Banerjee, Frontiers in hybrid ion capacitors: A review on advanced materials and emerging devices, ChemElectroChem, 8(2021), No. 8, p. 1390. doi: 10.1002/celc.202100325
    [8]
    J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
    [9]
    D. Lei, Z.D. Hou, N. Li, et al., A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors, Carbon, 201(2023), p. 260. doi: 10.1016/j.carbon.2022.09.019
    [10]
    G.Y. Zhang, K. Sun, Y.Y. Liu, et al., Double reaction initiated self-assembly process fabricated hard carbon with high power capability for lithium-ion capacitor anodes, Appl. Surf. Sci., 609(2023), art. No. 155083. doi: 10.1016/j.apsusc.2022.155083
    [11]
    Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium-ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
    [12]
    J. Zhang, H.Z. Wu, J. Wang, J.L. Shi, and Z.Q. Shi, Pre-lithiation design and lithium-ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors, Electrochim. Acta, 182(2015), p. 156. doi: 10.1016/j.electacta.2015.09.074
    [13]
    S.D. Liu, L. Kang, J. Zhang, S.C. Jun, and Y. Yamauchi, Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors, ACS Energy Lett., 6(2021), No. 11, p. 4127. doi: 10.1021/acsenergylett.1c01855
    [14]
    M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
    [15]
    M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
    [16]
    W. Yang, W. Yang, F. Zhang, G.X. Wang, and G.J. Shao, Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage, Small, 14(2018), No. 39, art. No. 1802221. doi: 10.1002/smll.201802221
    [17]
    M. O’Keeffe and O.M. Yaghi, Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets, Chem. Rev., 112(2012), No. 2, p. 675. doi: 10.1021/cr200205j
    [18]
    Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries, Nano Micro Lett., 13(2021), No. 1, art. No. 203. doi: 10.1007/s40820-021-00726-z
    [19]
    J.W. Zhou and B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage, Chem. Soc. Rev., 46(2017), No. 22, p. 6927. doi: 10.1039/C7CS00283A
    [20]
    S.Y. Zhang, Y.C. Xue, Y.T. Zhang, et al., KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 601. doi: 10.1007/s12613-022-2539-8
    [21]
    J.N. Zhou, Q.Y. Yang, Q.Y. Xie, et al., Recent progress in Co-based metal-organic framework derivatives for advanced batteries, J. Mater. Sci. Technol., 96(2022), p. 262. doi: 10.1016/j.jmst.2021.04.033
    [22]
    M.X. Liu, F.L. Zhao, D.Z. Zhu, et al., Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors, Mater. Chem. Phys., 211(2018), p. 234. doi: 10.1016/j.matchemphys.2018.02.030
    [23]
    A.D. Tan, Y.F. Wang, Z.Y. Fu, P. Tsiakaras, and Z.X. Liang, Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks, Appl. Catal. B, 218(2017), p. 260. doi: 10.1016/j.apcatb.2017.06.051
    [24]
    Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
    [25]
    H.B. Aiyappa, P. Pachfule, R. Banerjee, and S. Kurungot, Porous carbons from nonporous MOFs: Influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des., 13(2013), No. 10, p. 4195. doi: 10.1021/cg401122u
    [26]
    Y.X. Zhao, Y.W. Sun, J. Li, et al., Interpenetrated N-rich MOF derived vesicular N-doped carbon for high performance lithium-ion battery, Dalton Trans., 51(2022), No. 20, p. 7817. doi: 10.1039/D2DT00551D
    [27]
    S. Yuan, Q.H. Lai, X. Duan, and Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review, J. Energy Storage, 61(2023), art. No. 106716. doi: 10.1016/j.est.2023.106716
    [28]
    Y.B. Ma, K. Wang, Y.N. Xu, et al., Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors, Carbon, 202(2023), p. 175. doi: 10.1016/j.carbon.2022.11.030
    [29]
    Z.Y. Li, Y.X. Ye, Z.Z. Yao, et al., An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu122-OH)12(Pz)12] nodes for separation of C2H2/CH4 mixture, J. Mater. Chem. A, 6(2018), No. 40, p. 19681. doi: 10.1039/C8TA04498H
    [30]
    J.X. Wang, Z.L. Yan, G.C. Yan, et al., Spiral graphene coupling hierarchically porous carbon advances dual-carbon lithium-ion capacitor, Energy Storage Mater., 38(2021), p. 528. doi: 10.1016/j.ensm.2021.03.030
    [31]
    Y.Y. Zhu, M.M. Chen, Q. Li, C. Yuan, and C.Y. Wang, A porous biomass-derived anode for high-performance sodium-ion batteries, Carbon, 129(2018), p. 695. doi: 10.1016/j.carbon.2017.12.103
    [32]
    Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
    [33]
    L.Y. Zhao, X.Y. Zhao, L.T. Burke, J.C. Bennett, R.A. Dunlap, and M.N. Obrovac, Voronoi-tessellated graphite produced by low-temperature catalytic graphitization from renewable resources, ChemSusChem, 10(2017), No. 17, p. 3409. doi: 10.1002/cssc.201701211
    [34]
    D.P. Qiu, C.H. Kang, M. Li, et al., Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium-ion storage, Carbon, 162(2020), p. 595. doi: 10.1016/j.carbon.2020.02.083
    [35]
    S.W. Lee, N. Yabuuchi, B.M. Gallant, et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5(2010), No. 7, p. 531. doi: 10.1038/nnano.2010.116
    [36]
    H.B. Ouyang, Y.Y. Ma, Q.Q. Gong, et al., Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries, J. Alloys Compd., 823(2020), art. No. 153862. doi: 10.1016/j.jallcom.2020.153862
    [37]
    D.B. Kong, Y. Gao, Z.C. Xiao, X.H. Xu, X.L. Li, and L.J. Zhi, Rational design of carbon-rich materials for energy storage and conversion, Adv. Mater., 31(2019), No. 45, art. No. 1804973. doi: 10.1002/adma.201804973
    [38]
    A. Gomez-Martin, J. Martinez-Fernandez, M. Ruttert, et al., Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries, ChemSusChem, 11(2018), No. 16, p. 2776. doi: 10.1002/cssc.201800831
    [39]
    D. Adekoya, H. Chen, H.Y. Hoh, et al., Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage, ACS Nano, 14(2020), No. 4, p. 5027. doi: 10.1021/acsnano.0c01395
    [40]
    K. Tang, X.Q. Yu, J.P. Sun, H. Li, and X.J. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta, 56(2011), No. 13, p. 4869. doi: 10.1016/j.electacta.2011.02.119
    [41]
    J.M. Jiang, Z.W. Li, Z.T. Zhang, et al., Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors, Rare Met., 41(2022), No. 10, p. 3322. doi: 10.1007/s12598-022-02050-w
    [42]
    X.Z. Sun, X. Zhang, W.J. Liu, et al., Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium-ion capacitor, Electrochim. Acta, 235(2017), p. 158. doi: 10.1016/j.electacta.2017.03.110
    [43]
    J.T. Su, Y.J. Wu, C.L. Huang, et al., Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors, Chem. Eng. J., 396(2020), art. No. 125314. doi: 10.1016/j.cej.2020.125314
    [44]
    G. Moreno-Fernández, M. Granados-Moreno, J.L. Gómez-Urbano, and D. Carriazo, Phosphorus-functionalized graphene for lithium-ion capacitors with improved power and cyclability, Batteries Supercaps, 4(2021), No. 3, p. 469. doi: 10.1002/batt.202000247
    [45]
    Z.Q. Shi, J. Zhang, J. Wang, J.L. Shi, and C.Y. Wang, Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors, Electrochim. Acta, 153(2015), p. 476. doi: 10.1016/j.electacta.2014.12.018
    [46]
    P. Yu, G.J. Cao, S. Yi, et al., Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors, Nanoscale, 10(2018), No. 13, p. 5906. doi: 10.1039/C8NR00380G
    [47]
    X. Wang, Z.K. Wang, X. Zhang, et al., Nitrogen-doped defective graphene aerogel as anode for all graphene-based lithium-ion capacitor, ChemistrySelect, 2(2017), No. 27, p. 8436. doi: 10.1002/slct.201701501
    [48]
    M.X. Zhang, X. Zhang, Z.X. Liu, H.F. Peng, and G.K. Wang, Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium-ion capacitors, Ionics, 26(2020), No. 8, p. 4129. doi: 10.1007/s11581-020-03537-1
    [49]
    J.G. Ju, L.T. Zhang, H.S. Shi, Z.J. Li, W.M. Kang, and B.W. Cheng, Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor, Appl. Surf. Sci., 484(2019), p. 392. doi: 10.1016/j.apsusc.2019.04.099
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(361) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return