Jinge Feng, Jue Tang, Zichuan Zhao, Mansheng Chu, Aijun Zheng, Xiaobing Li,  and Xiao’ai Wang, Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 282-291. https://doi.org/10.1007/s12613-023-2730-6
Cite this article as:
Jinge Feng, Jue Tang, Zichuan Zhao, Mansheng Chu, Aijun Zheng, Xiaobing Li,  and Xiao’ai Wang, Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 282-291. https://doi.org/10.1007/s12613-023-2730-6
Research Article

Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution

+ Author Affiliations
  • Corresponding author:

    Jue Tang    E-mail: tangj@smm.neu.edu.cn

  • Received: 17 June 2023Revised: 12 August 2023Accepted: 16 August 2023Available online: 18 August 2023
  • Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium–titanium magnetite. However, in this process, the sticking of pellets occurs due to the aggregation of metallic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation. This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions. Results showed that the sticking index (SI) decreased linearly with the increasing TiO2 addition. This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction, leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface. When the TiO2 addition amount was raised from 0 to 15wt% at 1100°C, the SI also increased from 0.71% to 59.91%. The connection of the slag phase could be attributed to the sticking at a low reduction temperature, corresponding to the low sticking strength. Moreover, the interconnection of metallic iron became the dominant factor, and the SI increased sharply with the increase in reduction temperature. TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.
  • loading
  • [1]
    W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying, Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process, Powder Technol., 342(2019), p. 214. doi: 10.1016/j.powtec.2018.09.069
    [2]
    W. Zhang, G. Tang, J.W. Yan, et al., The decolorization of methyl orange by persulfate activated with natural vanadium-titanium magnetite, Appl. Surf. Sci., 509(2020), art. No. 144886. doi: 10.1016/j.apsusc.2019.144886
    [3]
    X.F. Guo, S.J. Dai, and Q.Q. Wang, Influence of different comminution flowsheets on the separation of vanadium titano-magnetite, Miner. Eng., 149(2020), art. No. 106268. doi: 10.1016/j.mineng.2020.106268
    [4]
    Y.Y. Zhao, F.G. Zeng, H.Z. Liang, et al., Chromium and vanadium bearing nanominerals and ultra-fine particles in a super-high-organic-sulfur coal from Ganhe coalmine, Yanshan Coalfield, Yunnan, China, Fuel, 203(2017), p. 832. doi: 10.1016/j.fuel.2017.05.044
    [5]
    S. Ren, J.L. Zhang, X.D. Xing, B.X. Su, Z. Wang, and B.J. Yan, Effect of B2O3 on phase compositions of high Ti bearing titanomagnetite sinter, Ironmaking Steelmaking, 41(2014), No. 7, p. 500. doi: 10.1179/1743281213Y.0000000145
    [6]
    W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, and Y.T. Tang, Novel blast furnace operation process involving charging with low-titanium vanadium–titanium magnetite carbon composite hot briquette, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 501. doi: 10.1007/s12613-016-1261-9
    [7]
    Y.J. Zhang, Q. Yue, X.C. Chai, Q. Wang, Y.Q. Lu, and W. Ji, Analysis of process parameters on energy utilization and environmental impact of hydrogen metallurgy, J. Cleaner Prod., 361(2022), art. No. 132289. doi: 10.1016/j.jclepro.2022.132289
    [8]
    S.H. Zhang, B.W. Yi, E. Worrell, et al., Integrated assessment of resource-energy-environment nexus in China’s iron and steel industry, J. Cleaner Prod., 232(2019), p. 235. doi: 10.1016/j.jclepro.2019.05.392
    [9]
    S. Ren, J.L. Zhang, L.S. Wu, B.X. Su, X.D. Xing, and G.Y. Zhu, Effect of TiO2 on equilibrium phase sinter at oxygen partial pressure of 5 × 10–3 atm, Ironmaking Steelmaking, 41(2014), No. 2, p. 132. doi: 10.1179/1743281213Y.0000000111
    [10]
    S. Ren, Q.C. Liu, J.L. Zhang, M. Chen, X.D. Ma, and B.J. Zhao, Laboratory study of phase transitions and mechanism of reduction of FeO from high Ti-bearing blast furnace primary slag by graphite, Ironmaking Steelmaking, 42(2015), No. 2, p. 117. doi: 10.1179/1743281214Y.0000000209
    [11]
    J. Tang, M.S. Chu, C. Feng, Y.T. Tang, and Z.G. Liu, Melting Separation behavior and mechanism of high-chromium vanadium–bearing titanomagnetite metallized pellet got from gas-based direct reduction, ISIJ Int., 56(2016), No. 2, p. 210. doi: 10.2355/isijinternational.ISIJINT-2015-448
    [12]
    L. Wang, P.M. Guo, L.B. Kong, and P. Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1922. doi: 10.1007/s12613-022-2478-4
    [13]
    Z.C. Zhao, J. Tang, M.S. Chu, et al., Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1891. doi: 10.1007/s12613-022-2494-4
    [14]
    S. Song and Y. Kang, Effect of carbon addition on direct reduction behavior of low quality magnetite ore by reducing gas atmosphere, Metals, 11(2021), No. 9, art. No. 1404. doi: 10.3390/met11091404
    [15]
    P. Prusti, S.S. Rath, N. Dash, B.C. Meikap, and S.K. Biswal, Pelletization of hematite and synthesized magnetite concentrate from a banded hematite quartzite ore: A comparison study, Adv. Powder Technol., 32(2021), No. 10, p. 3735. doi: 10.1016/j.apt.2021.08.025
    [16]
    Y. Yu, B.K. Li, C.J. Wang, Z.Z. Fang, X. Yang, and F. Tsukihashi, Evaluation and synergy of material and energy in the smelting process of ferrochrome pellets in steel belt sintering-submerged arc furnace, Energy, 179(2019), p. 792. doi: 10.1016/j.energy.2019.05.061
    [17]
    S. Hayashi and Y. Iguchi, Factors affecting the sticking of fine iron ores during fluidized bed reduction, ISIJ Int., 32(1992), No. 9, p. 962. doi: 10.2355/isijinternational.32.962
    [18]
    Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Sticking behaviour of vanadium titano-magnetite oxidised pellets during gas-based reduction and its prevention, Ironmaking Steelmaking, 44(2017), No. 3, p. 185. doi: 10.1080/03019233.2016.1200284
    [19]
    Z.X. Di, Z.Y. Li, R.F. Wei, et al., Sticking behaviour and mechanism of iron ore pellets in COREX pre-reduction shaft furnace, Ironmaking Steelmaking, 46(2019), No. 2, p. 159. doi: 10.1080/03019233.2017.1361079
    [20]
    L.Y. Yi, Z.C. Huang, T.H. Li, and T. Jiang, Sticking of iron ore pellets in direct reduction with hydrogen and carbon monoxide: Behavior and prevention, J. Cent. South Univ., 21(2014), No. 2, p. 506. doi: 10.1007/s11771-014-1968-6
    [21]
    L.Y. Yi, Z.C. Huang, and T. Jiang, Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: Behavior and mechanism, Powder Technol., 235(2013), p. 1001. doi: 10.1016/j.powtec.2012.11.043
    [22]
    K.S. Abdel-Halim, M.I. Nasr, and A.A. El-Geassy, Developed model for reduction mechanism of iron ore pellets under load, Ironmaking Steelmaking, 38(2011), No. 3, p. 189. doi: 10.1179/030192310X12816231892305
    [23]
    B. Zhang, Z. Wang, X.Z. Gong, and Z.C. Guo, A comparative study of influence of fluidized conditions on sticking time during reduction of Fe2O3 particles with CO, Powder Technol., 225(2012), p. 1. doi: 10.1016/j.powtec.2012.02.009
    [24]
    J.X. Li, R.F. Wei, H.M. Long, P. Wang, and D.Q. Cang, Sticking behavior of iron ore–coal pellets and its inhibition, Powder Technol., 262(2014), p. 30. doi: 10.1016/j.powtec.2014.04.059
    [25]
    J.F. Gransden and J.S. Sheasby, The sticking of iron ore during reduction by hydrogen in a fluidized bed, Can. Metall. Q., 13(1974), No. 4, p. 649. doi: 10.1179/cmq.1974.13.4.649
    [26]
    D.R. Higgins, N.B. Gray, and M.R. Davidson, Simulating particle agglomeration in the flash smelting reaction shaft, Miner. Eng., 22(2009), No. 14, p. 1251. doi: 10.1016/j.mineng.2009.07.005
    [27]
    M. Bartels, W.G. Lin, J. Nijenhuis, F. Kapteijn, and Ruud van Ommen J, Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention, Prog. Energy Combust. Sci., 34(2008), No. 5, p. 633. doi: 10.1016/j.pecs.2008.04.002
    [28]
    J.L. Zhang, J. Schenk, Z.J. Liu, and K.J. Li, Editorial for special issue on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1817. doi: 10.1007/s12613-022-2535-z
    [29]
    J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
    [30]
    Z. Kang, Q.L. Liao, Z. Zhang, and Y. Zhang, Carbon neutrality orientates the reform of the steel industry, Nat. Mater., 21(2022), p. 1094. doi: 10.1038/s41563-022-01370-7
    [31]
    B.C. McLellan, Potential opportunities and impacts of a hydrogen economy for the Australian minerals industry, Int. J. Hydrogen Energy, 34(2009), No. 9, p. 3571. doi: 10.1016/j.ijhydene.2009.03.008
    [32]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [33]
    W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence of TiO2 addition on the oxidation induration and reduction behavior of Hongge vanadium titanomagnetite pellets with simulated shaft furnace gases, Powder Technol., 326(2018), p. 137. doi: 10.1016/j.powtec.2017.12.050
    [34]
    J. Tang, M.S. Chu, C. Feng, F. Li, Y.T. Tang, and Z.G. Liu, Coupled effect of valuable components in high-chromium vanadium-bearing titanomagnetite during oxidization roasting, ISIJ Int., 56(2016), No. 8, p. 1342. doi: 10.2355/isijinternational.ISIJINT-2016-051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(415) PDF Downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return