Qianqian Wang, Zequn Yao, Lijie Guo,  and Xiaodong Shen, Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 562-573. https://doi.org/10.1007/s12613-023-2743-1
Cite this article as:
Qianqian Wang, Zequn Yao, Lijie Guo,  and Xiaodong Shen, Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 562-573. https://doi.org/10.1007/s12613-023-2743-1
Research Article

Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials

+ Author Affiliations
  • Corresponding authors:

    Qianqian Wang    E-mail: qqwang@njtech.edu.cn

    Lijie Guo    E-mail: guolijie@bgrimm.com

  • Received: 10 May 2023Revised: 10 September 2023Accepted: 12 September 2023Available online: 13 September 2023
  • Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO2-mineralized cementitious materials. In this work, copper-nickel slag-based cementitious material (CNCM) was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO2 mineralization capacity. Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development. Meanwhile, thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO2 adsorption amount and carbonation products of CNCM. Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging (BSE) with energy-dispersive X-ray spectrometry. Results showed that among the studied samples, the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO2 sequestration amount of 8.51wt% at 80°C and 72 h while presenting the compressive strength of 39.07 MPa. This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO2 and exhibit high compressive strength. Although the addition of citric acid did not improve strength development, it was beneficial to increase the CO2 diffusion and adsorption amount under the same carbonation conditions from BSE results. This work provides guidance for synthesizing CO2-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
  • loading
  • Supplementary Information-s12613-023-2743-1.docx
  • [1]
    IEA (2023), CO 2 Emissions in 2022, IEA, Paris [2022-4-24]. https://www.iea.org/reports/co2-emissions-in-2022
    [2]
    Z. Liu, Z. Deng, S.J. Davis, C. Giron, and P. Ciais, Monitoring global carbon emissions in 2021, Nat. Rev. Earth Environ., 3(2022), No. 4, p. 217. doi: 10.1038/s43017-022-00285-w
    [3]
    L.M. Alsarhan, A.S. Alayyar, N.B. Alqahtani, and N.H. Khdary, Circular carbon economy (CCE): A way to invest CO2 and protect the environment, A review, Sustainability, 13(2021), No. 21, art. No. 11625. doi: 10.3390/su132111625
    [4]
    S.Y. Pan, Y.H. Chen, L.S. Fan, et al., CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain., 3(2020), No. 5, p. 399. doi: 10.1038/s41893-020-0486-9
    [5]
    G. Gadikota, Carbon mineralization pathways for carbon capture, storage and utilization, Commun. Chem., 4(2021), No. 1, art. No. 23. doi: 10.1038/s42004-021-00461-x
    [6]
    J.J. Li and M. Hitch, Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1005. doi: 10.1007/s12613-015-1162-3
    [7]
    Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626. doi: 10.1007/s12613-021-2374-3
    [8]
    B. Traynor, C. Mulcahy, H. Uvegi, T. Aytas, N. Chanut, and E.A. Olivetti, Dissolution of olivines from steel and copper slags in basic solution, Cem. Concr. Res., 133(2020), art. No. 106065. doi: 10.1016/j.cemconres.2020.106065
    [9]
    E.H. Oelkers, J. Declercq, G.D. Saldi, S.R. Gislason, and J. Schott, Olivine dissolution rates: A critical review, Chem. Geol., 500(2018), p. 1. doi: 10.1016/j.chemgeo.2018.10.008
    [10]
    C.C. Sun, Z.Q. Yao, Q.Q. Wang, L.J. Guo, and X.D. Shen, Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral, Appl. Surf. Sci., 614(2023), art. No. 156063. doi: 10.1016/j.apsusc.2022.156063
    [11]
    O. Qafoku, L. Kovarik, R.K. Kukkadapu, et al., Fayalite dissolution and siderite formation in water-saturated supercritical CO2, Chem. Geol., 332-333(2012), p. 124. doi: 10.1016/j.chemgeo.2012.09.028
    [12]
    D.E. Giammar, R.G. Bruant, and C.A. Peters, Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chem. Geol., 217(2005), No. 3-4, p. 257. doi: 10.1016/j.chemgeo.2004.12.013
    [13]
    N.C. Johnson, B. Thomas, K. Maher, R.J. Rosenbauer, D. Bird, and G.E. Brown Jr, Olivine dissolution and carbonation under conditions relevant for in situ carbon storage, Chem. Geol., 373(2014), p. 93. doi: 10.1016/j.chemgeo.2014.02.026
    [14]
    M. Azadi, M. Edraki, F. Farhang, and J. Ahn, Opportunities for mineral carbonation in Australia’s mining industry, Sustainability, 11(2019), No. 5, art. No. 1250. doi: 10.3390/su11051250
    [15]
    A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Petrol. Sci. Eng., 109(2013), p. 364. doi: 10.1016/j.petrol.2013.03.013
    [16]
    Z.M. Chen, R. Li, X.M. Zheng, and J.X. Liu, Carbon sequestration of steel slag and carbonation for activating RO phase, Cem. Concr. Res., 139(2021), art. No. 106271. doi: 10.1016/j.cemconres.2020.106271
    [17]
    L.W. Mo and D.K. Panesar, Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO, Cem. Concr. Res., 42(2012), No. 6, p. 769. doi: 10.1016/j.cemconres.2012.02.017
    [18]
    L. Wang, L. Chen, J.L. Provis, D.C.W. Tsang, and C.S. Poon, Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas, Cem. Concr. Compos., 106(2020), art. No. 103489. doi: 10.1016/j.cemconcomp.2019.103489
    [19]
    S.A. Novikova, Fayalite from Fe-rich paralavas of ancient coal fires in the Kuzbass, Russia, Geol. Ore Depos., 51(2009), No. 8, p. 800. doi: 10.1134/S1075701509080133
    [20]
    J.S. Loring, Q.R.S. Miller, C.J. Thompson, and H.T. Schaef, Experimental studies of reactivity and transformations of rocks and minerals in water-bearing supercritical CO2, [in] Science of Carbon Storage in Deep Saline Formations, Elsevier, Amsterdam, 2019, p. 63.
    [21]
    A.T.M. Marsh, T. Yang, S. Adu-Amankwah, and S.A. Bernal, Utilization of metallurgical wastes as raw materials for manufacturing alkali-activated cements, [in] Waste and Byproducts in Cement-based Materials, Woodhead Publishing, Sawston, 2021, p. 335.
    [22]
    T. Yang, X. Yao, and Z.H. Zhang, Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure, Constr. Build. Mater., 59(2014), p. 188. doi: 10.1016/j.conbuildmat.2014.01.038
    [23]
    T. Yang, Z.H. Zhang, H.J. Zhu, X. Gao, C.D. Dai, and Q.S. Wu, re-examining the suitability of high magnesium nickel slag as precursors for alkali-activated materials, Constr. Build. Mater., 213(2019), p. 109. doi: 10.1016/j.conbuildmat.2019.04.063
    [24]
    Y.D. Huang, Q. Wang, and M.X. Shi, Characteristics and reactivity of ferronickel slag powder, Constr. Build. Mater., 156(2017), p. 773. doi: 10.1016/j.conbuildmat.2017.09.038
    [25]
    C.L. Wang, Z.Z. Ren, Z.K. Huo, et al., Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag, Alex. Eng. J., 60(2021), No. 6, p. 4961. doi: 10.1016/j.aej.2020.12.058
    [26]
    T. Yang, Z.H. Zhang, Q. Wang, and Q.S. Wu, ASR potential of nickel slag fine aggregate in blast furnace slag–fly ash geopolymer and Portland cement mortars, Constr. Build. Mater., 262(2020), art. No. 119990. doi: 10.1016/j.conbuildmat.2020.119990
    [27]
    F. Wang, D. Dreisinger, M. Jarvis, and T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration, Miner. Eng., 131(2019), p. 185. doi: 10.1016/j.mineng.2018.11.024
    [28]
    F. Wang, D. Dreisinger, M. Jarvis, T. Hitchins, and L. Trytten, CO2 mineralization and concurrent utilization for nickel conversion from nickel silicates to nickel sulfides, Chem. Eng. J., 406(2021), art. No. 126761. doi: 10.1016/j.cej.2020.126761
    [29]
    Z.Q. Yao, C.C. Sun, Q.Q. Wang, and X.D. Shen, The dissolution kinetics of copper–nickel slag, [in] the 10th International Symposium on Cement and Concrete (ISCC 2022), Guangzhou, 2022, p. 14.
    [30]
    P. Giannaros, A. Kanellopoulos, and A. Al-Tabbaa, Sealing of cracks in cement using microencapsulated sodium silicate, Smart Mater. Struct., 25(2016), No. 8, art. No. 084005. doi: 10.1088/0964-1726/25/8/084005
    [31]
    E. Drouet, S. Poyet, P. Le Bescop, J.M. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cem. Concr. Res., 115(2019), p. 445. doi: 10.1016/j.cemconres.2018.09.019
    [32]
    Y.X. Zhao, F. Wei, and Y. Yu, Effects of reaction time and temperature on carbonization in asphaltene pyrolysis, J. Petrol. Sci. Eng., 74(2010), No. 1-2, p. 20. doi: 10.1016/j.petrol.2010.08.002
    [33]
    N. Wada, K. Kanamura, and T. Umegaki, Effects of carboxylic acids on the crystallization of calcium carbonate, J. Colloid Interface Sci., 233(2001), No. 1, p. 65. doi: 10.1006/jcis.2000.7215
    [34]
    Y.F. Ma, Y.H. Gao, and Q.L. Feng, Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls, J. Cryst. Growth, 312(2010), No. 21, p. 3165. doi: 10.1016/j.jcrysgro.2010.07.053
    [35]
    M. Kogo, K. Suzuki, T. Umegaki, and Y. Kojima, Control of aragonite formation and its crystal shape in CaCl2–Na2CO3–H2O reaction system, J. Cryst. Growth, 559(2021), art. No. 125964. doi: 10.1016/j.jcrysgro.2020.125964
    [36]
    S.L. Guo, Y. Lu, Y.H. Bu, and B.L. Li, Effect of carboxylic group on the compatibility with retarder and the retarding side effect of the fluid loss control additive used in oil well cement, R. Soc. Open Sci., 5(2018), No. 9, art. No. 180490. doi: 10.1098/rsos.180490
    [37]
    X.H. Ye, T.W. Chen, and J.K. Chen, Carbonation of cement paste under different pressures, Constr. Build. Mater., 370(2023), art. No. 130511. doi: 10.1016/j.conbuildmat.2023.130511
    [38]
    F. Matsushita, Y. Aono, and S. Shibata, Calcium silicate structure and carbonation shrinkage of a tobermorite-based material, Cem. Concr. Res., 34(2004), No. 7, p. 1251. doi: 10.1016/j.cemconres.2003.12.016
    [39]
    V.W.Y. Tam, A. Butera, and K.N. Le, An investigation of the shrinkage, concrete shrinkage reversibility and permeability of CO2-treated concrete, Constr. Build. Mater., 365(2023), art. No. 130120. doi: 10.1016/j.conbuildmat.2022.130120
    [40]
    Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
    [41]
    X. Luo, S.J. Li, Z.H. Guo, C. Liu, and J.M. Gao, Effect of curing temperature on the hydration property and microstructure of Portland cement blended with recycled brick powder, J. Build. Eng., 61(2022), art. No. 105327. doi: 10.1016/j.jobe.2022.105327
    [42]
    M. Mejdi, W. Wilson, M. Saillio, T. Chaussadent, L. Divet, and A. Tagnit-Hamou, Hydration and microstructure of glass powder cement pastes—A multi-technique investigation, Cem. Concr. Res., 151(2022), art. No. 106610. doi: 10.1016/j.cemconres.2021.106610
    [43]
    X.D. Li, Q.Q. Wang, X.D. Shen, E.T. Pedrosa, and A. Luttge, Multiscale investigation of olivine (010) face dissolution from a surface control perspective, Appl. Surf. Sci., 549(2021), art. No. 149317. doi: 10.1016/j.apsusc.2021.149317
    [44]
    M. Kazemian and B. Shafei, Carbon sequestration and storage in concrete: A state-of-the-art review of compositions, methods, and developments, J. CO2 Util., 70(2023), art. No. 102443. doi: 10.1016/j.jcou.2023.102443
    [45]
    P. Liu, L.W. Mo, and Z. Zhang, Effects of carbonation degree on the hydration reactivity of steel slag in cement-based materials, Constr. Build. Mater., 370(2023), art. No. 130653. doi: 10.1016/j.conbuildmat.2023.130653
    [46]
    F. Wang and D. Dreisinger, Status of CO2 mineralization and its utilization prospects, Miner. Miner. Mater., 1(2022), art. No. 4. doi: 10.20517/mmm.2022.02
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(341) PDF Downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return