Xiaoyu Shi, Chongxiao Guo, Jiamiao Ni, Songsong Yao, Liqiang Wang, Yue Liu,  and Tongxiang Fan, Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1858-1864. https://doi.org/10.1007/s12613-023-2749-8
Cite this article as:
Xiaoyu Shi, Chongxiao Guo, Jiamiao Ni, Songsong Yao, Liqiang Wang, Yue Liu,  and Tongxiang Fan, Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1858-1864. https://doi.org/10.1007/s12613-023-2749-8
Research Article

Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface

+ Author Affiliations
  • Corresponding authors:

    Yue Liu    E-mail: yliu23@sjtu.edu.cn

    Tongxiang Fan    E-mail: txfan@sjtu.edu.cn

  • Received: 19 July 2023Revised: 13 September 2023Accepted: 15 September 2023Available online: 20 September 2023
  • The synthesis of carbide coatings on graphite substrates using molten salt synthesis (MSS), has garnered significant interest due to its cost-effective nature. This study investigates the reaction process and growth kinetics involved in MSS, shedding light on key aspects of the process. The involvement of Ti powder through liquid-phase mass transfer is revealed, where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide. Furthermore, the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer, rather than the chemical reaction rate. To analyze the kinetics, the thickness of the carbide layer is measured with respect to heat treatment time and temperature, unveiling a parabolic relationship within the temperature range of 700–1300°C. The estimated activation energy for the reaction is determined to be 179283 J·mol−1. These findings offer valuable insights into the synthesis of carbide coatings via MSS, facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
  • loading
  • [1]
    P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
    [2]
    H.D. Zhang, J.J. Zhang, Y. Liu, F. Zhang, T.X. Fan, and D. Zhang, Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface, Scripta Mater., 152(2018), p. 84. doi: 10.1016/j.scriptamat.2018.04.021
    [3]
    Z.F. Hu, Y.C. Tong, M. Wang, J.B. Xu, and C. Yang, Rapid and low-cost carbon/carbon composites by using graphite slurry impregnated prepregs, J. Eur. Ceram. Soc., 43(2023), No. 10, p. 4363. doi: 10.1016/j.jeurceramsoc.2023.04.002
    [4]
    S. Chand, Review carbon fibers for composites, J. Mater. Sci., 35(2000), No. 6, p. 1303. doi: 10.1023/A:1004780301489
    [5]
    T.K. Das, P. Ghosh, and N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review, Adv. Compos. Hybrid Mater., 2(2019), No. 2, p. 214. doi: 10.1007/s42114-018-0072-z
    [6]
    S. Zhang and W.E. Lee, Carbon containing castables: Current status and future prospects, Br. Ceram. Trans., 101(2002), No. 1, p. 1. doi: 10.1179/096797801125000410
    [7]
    I.R. de Oliveira, A.R. Studart, V.C. Pandolfelli, and B.A. Menegazzo, Zero-cement refractory castables, Am. Ceram. Soc. Bull., 81(2002), No. 12, p. 27.
    [8]
    M.M. Harussani, S.M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, Recent applications of carbon-based composites in defence industry: A review, Def. Technol., 18(2022), No. 8, p. 1281. doi: 10.1016/j.dt.2022.03.006
    [9]
    M. Yang, Y. Liu, T.X. Fan, and D. Zhang, Metal-graphene interfaces in epitaxial and bulk systems: A review, Prog. Mater. Sci., 110(2020), art. No. 100652. doi: 10.1016/j.pmatsci.2020.100652
    [10]
    T.X. Fan, Y. Liu, K.M. Yang, J. Song, and D. Zhang, Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites, Acta Metall. Sin., 55(2019), No. 1, p. 16.
    [11]
    J. Song, S.S. Yao, Q. Li, et al., Reorientation mechanisms of graphene coated copper{001} surfaces, Metals, 13(2023), No. 5, art. No. 910. doi: 10.3390/met13050910
    [12]
    C. Verdon, O. Szwedek, S. Jacques, A. Allemand, and Y. Le Petitcorps, Hafnium and silicon carbide multilayer coatings for the protection of carbon composites, Surf. Coat. Technol., 230(2013), p. 124. doi: 10.1016/j.surfcoat.2013.06.022
    [13]
    M.P. Bacos, Carbon–carbon composites: Oxidation behavior and coatings protection, J. Phys. IV, 3(1993), No. C7, p. C7-1895.
    [14]
    C. Friedrich, R. Gadow, and M. Speicher, Protective multilayer coatings for carbon–carbon composites, Surf. Coat. Technol., 151-152(2002), p. 405. doi: 10.1016/S0257-8972(01)01655-3
    [15]
    Z.L. Liu, C.J. Deng, C. Yu, J. Ding, and H.X. Zhu, Improving the anti-oxidation and water wettability of graphite through the design of coating structure for the preparation of Al2O3–SiC–C castables, Ceram. Int., 49(2023), No. 17, p. 29104. doi: 10.1016/j.ceramint.2023.06.186
    [16]
    C.L. Kuang, X. Wang, Z.L. Liu, et al., Nanocrystalline ZrC coated graphite and its effect on mechanical properties and thermal shock resistance of low-carbon Al2O3–C refractories, Ceram. Int., 48(2022), No. 22, p. 33926. doi: 10.1016/j.ceramint.2022.07.341
    [17]
    X. Yang, Q.Z. Huang, Z.A. Su, et al., Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction, Corros. Sci., 75(2013), p. 16. doi: 10.1016/j.corsci.2013.05.009
    [18]
    P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200. doi: 10.1007/s12613-021-2339-6
    [19]
    X.Y. Liu, F.Y. Sun, W. Wang, et al., Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2020. doi: 10.1007/s12613-021-2336-9
    [20]
    G.Y. Liu, F.G. Hou, S.L. Peng, X.D. Wang, and B.Z. Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099. doi: 10.1007/s12613-022-2485-5
    [21]
    Z. Liu, W. Cheng, D.K. Mu, et al., Influences of early-stage C diffusion on growth microstructures in solid-state interface reaction between CVD diamond and sputtered Cr, Mater. Charact., 196(2023), art. No. 112603. doi: 10.1016/j.matchar.2022.112603
    [22]
    H.Q. Wang, L.T. Wang, and H.Y. Zhang, The study of TiC/C composite fiber by chemical vapor deposition, Appl. Mech. Mater., 69(2011), p. 99. doi: 10.4028/www.scientific.net/AMM.69.99
    [23]
    A.P. Rubshtein, A.B. Vladimirov, Y.V. Korkh, Y.S. Ponosov, and S.A. Plotnikov, The composition, structure and surface properties of the titanium–carbon coatings prepared by PVD technique, Surf. Coat. Technol., 309(2017), p. 680. doi: 10.1016/j.surfcoat.2016.11.020
    [24]
    N.Q. Chen, Q. Li, Y.C. Ma, et al., Significant strengthening of copper-based composites using boron nitride nanotubes, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1764. doi: 10.1007/s12613-023-2633-6
    [25]
    Y. Huang, J.M. Ni, X.Y. Shi, et al., Two-step thermal transformation of multilayer graphene using polymeric carbon source assisted by physical vapor deposited copper, Materials, 16(2023), No. 16, art. No. 5603. doi: 10.3390/ma16165603
    [26]
    X. Liu and S. Zhang, Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts, J. Am. Ceram. Soc., 91(2008), No. 2, p. 667. doi: 10.1111/j.1551-2916.2007.02184.x
    [27]
    X.G. Liu, Z.F. Wang, and S.W. Zhang, Molten salt synthesis and characterization of titanium carbide-coated graphite flakes for refractory castable applications, Int. J. Appl. Ceram. Technol., 8(2011), No. 4, p. 911. doi: 10.1111/j.1744-7402.2010.02529.x
    [28]
    J. Ding, D. Guo, C.J. Deng, H.X. Zhu, and C. Yu, Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts, Appl. Surf. Sci., 407(2017), p. 315. doi: 10.1016/j.apsusc.2017.02.196
    [29]
    S. Masoudifar, M. Bavand-Vandchali, F. Golestani-Fard, and A. Nemati, Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables, Ceram. Int., 42(2016), No. 10, p. 11951. doi: 10.1016/j.ceramint.2016.04.120
    [30]
    Z.J. Dong, X.K. Li, G.M. Yuan, et al., Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method, Appl. Surf. Sci., 254(2008), No. 18, p. 5936. doi: 10.1016/j.apsusc.2008.03.158
    [31]
    S. Suasmoro, F.A.R. Wati, and N. Muhaimin, Ti–Zr coating on graphite through powder immersion reaction-assisted coating (PIRAC) and its oxidation kinetics at T =1000°C, Bull. Mater. Sci., 42(2019), No. 3, art. No. 126. doi: 10.1007/s12034-019-1819-z
    [32]
    L.H. Wang, J.W. Li, L.Y. Gao, et al., Gradient interface formation in Cu–Cr/diamond(Ti) composites prepared by gas pressure infiltration, Vacuum, 206(2022), art. No. 111549. doi: 10.1016/j.vacuum.2022.111549
    [33]
    L. Constantin, L. Fan, M. Pouey, et al., Spontaneous formation of multilayer refractory carbide coatings in a molten salt media, PNAS, 118(2021), No. 18, art. No. e2100663118. doi: 10.1073/pnas.2100663118
    [34]
    F. Behboudi, M.G. Kakroudi, N.P. Vafa, M. Faraji, and S.S. Milani, Molten salt synthesis of in situ TiC coating on graphite flakes, Ceram. Int., 47(2021), No. 6, p. 8161. doi: 10.1016/j.ceramint.2020.11.172
    [35]
    X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
    [36]
    J.T. Wang, X.Q. Kan, Z.L. Liu, et al., Low-temperature and efficient preparation of starfish-like Mo2C/C composites from waste biomass, J. Phys. Chem. Solids, 181(2023), art. No. 111522. doi: 10.1016/j.jpcs.2023.111522
    [37]
    M.E. Straumanis, S.T. Shih, and A.W. Schlechten, The mechanism of deposition of titanium coatings from fused salt baths, J. Electrochem. Soc., 104(1957), No. 1, art. No. 17. doi: 10.1149/1.2428485
    [38]
    A. Miriyev, M. Sinder, and N. Frage, Thermal stability and growth kinetics of the interfacial TiC layer in the Ti alloy/carbon steel system, Acta Mater., 75(2014), p. 348. doi: 10.1016/j.actamat.2014.05.024
    [39]
    M.I. De Barros, D. Rats, L. Vandenbulcke, and G. Farges, Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition, Diam. Relat. Mater., 8(1999), No. 6, p. 1022. doi: 10.1016/S0925-9635(98)00439-7
    [40]
    K. Kōyama, Y. Hashimoto, and S.I. Ōmori, Diffusion of carbon in TiC, Trans. JIM, 16(1975), No. 4, p. 211. doi: 10.2320/matertrans1960.16.211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(229) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return