Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai, and Junye Sheng, Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 812-824. https://doi.org/10.1007/s12613-023-2768-5
Cite this article as:
Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai, and Junye Sheng, Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 812-824. https://doi.org/10.1007/s12613-023-2768-5
Research Article

Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption

+ Author Affiliations
  • Corresponding authors:

    Qingda An    E-mail: anqingda@163.com

    Shangru Zhai    E-mail: zhaisrchem@163.com

  • Received: 16 July 2023Revised: 20 October 2023Accepted: 23 October 2023Available online: 24 October 2023
  • Electromagnetic wave (EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health. However, obtaining lightweight, high-performance, and broadband EMW-absorbing material remains an overwhelming challenge. Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials. Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses, low costs, abundant resources, and light weights. Here, FeNi alloy nanosheet array/Lycopodium spore-derived carbon (FeNi/LSC) was prepared through a simple hydrothermal and carbonization method. FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array, sponge-like structure, capability for impedance matching, and improved dielectric/magnetic losses. As expected, FeNi/LSC exhibited the minimum reflection loss of −58.3 dB at 1.5 mm with 20wt% filler content and a widely effective absorption bandwidth of 4.92 GHz. FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.
  • loading
  • Supplementary Information-s12613-023-2768-5.docx
  • [1]
    H.L. Lv, Z.H. Yang, H.G. Pan, and R.B. Wu, Electromagnetic absorption materials: Current progress and new frontiers, Prog. Mater. Sci., 127(2022), art. No. 100946. doi: 10.1016/j.pmatsci.2022.100946
    [2]
    Z.D. Zhang, Y.M. Zhao, G.H. Fan, et al., Paper-based flexible metamaterial for microwave applications, EPJ Appl. Metamater., 8(2021), art. No. 6. doi: 10.1051/epjam/2020016
    [3]
    S.K. Srivastava and K. Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review, J. Mater. Chem. A, 10(2022), No. 14, p. 7431. doi: 10.1039/D1TA09522F
    [4]
    F. Wu, K. Yang, Q. Li, et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption, Carbon, 173(2021), p. 918. doi: 10.1016/j.carbon.2020.11.088
    [5]
    H.H. Zhu, J. Liang, J.F. Chen, et al., Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption, J. Colloid Interface Sci., 626(2022), p. 775. doi: 10.1016/j.jcis.2022.06.156
    [6]
    B.L. Wang, Y.G. Fu, J. Li, Q. Wu, X.Y. Wang, and T. Liu, Construction of Co@C nanocapsules by one-step carbon reduction of single-crystal Co3O4 nanoparticles: Ultra-wideband microwave absorber verified via coaxial and arch methods, Chem. Eng. J., 445(2022), art. No. 136863. doi: 10.1016/j.cej.2022.136863
    [7]
    W. Tian, J.Y. Li, Y.F. Liu, et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands, Nano Micro Lett., 13(2021), No. 1, art. No. 161. doi: 10.1007/s40820-021-00678-4
    [8]
    H.H. Niu, X.Y. Tu, S. Zhang, et al., Engineered core–shell SiO2@Ti3C2T x composites: Towards ultra-thin electromagnetic wave absorption materials, Chem. Eng. J., 446(2022), art. No. 137260. doi: 10.1016/j.cej.2022.137260
    [9]
    T.H. Liu, K.X. Shang, C. Miao, and J. Ouyang, Multiple interface coupling in halloysite/reduced graphene oxide/cobalt nickel composites for high-performance electromagnetic wave absorption, J. Colloid Interface Sci., 628(2022), p. 858. doi: 10.1016/j.jcis.2022.07.172
    [10]
    X.X. Wang, F.F. You, X.Y. Wen, K.R. Wang, G.X. Tong, and W.H. Wu, Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption, Chem. Eng. J., 445(2022), art. No. 136431. doi: 10.1016/j.cej.2022.136431
    [11]
    Q. Zhou, T.T. Shi, B. Xue, et al., Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p.1198. doi: 10.1007/s12613-022-2583-4
    [12]
    R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
    [13]
    B. Wen, G.R. Yang, X.Y. Zhou, and S.J. Ding, Intelligent diffusion regulation induced in situ growth of cobalt nanoclusters on carbon nanotubes for excellent electromagnetic wave absorption, J. Colloid Interface Sci., 634(2023), p. 74. doi: 10.1016/j.jcis.2022.12.060
    [14]
    Y.C. Wang, L.H. Yao, Q. Zheng, and M.S. Cao, Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding, Nano Res., 15(2022), No. 7, p. 6751. doi: 10.1007/s12274-022-4428-x
    [15]
    S.K. Hou, Y. Wang, F. Gao, et al. , In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber, Mater. Des., 225(2023), art. No. 111576. doi: 10.1016/j.matdes.2022.111576
    [16]
    X. Jin, A. Al-Qatatsheh, K. Subhani, and N.V. Salim, An ultralight, elastic carbon nanofiber aerogel with efficient energy storage and sorption properties, Nanoscale, 14(2022), No. 18, p. 6854. doi: 10.1039/D2NR00083K
    [17]
    D.D. Wang, M.Y. Zhang, Y. Guo, et al., Facile preparation of a cellulose derived carbon/BN composite aerogel for superior electromagnetic wave absorption, J. Mater. Chem. C, 10(2022), No. 13, p. 5311. doi: 10.1039/D2TC00205A
    [18]
    H. Lv, Z.Y. Xiao, S.R. Zhai, X.T. Wang, J.A. Hao, and Q.D. An, Designed formation of C/Fe3O4@Ni(OH)2 cathode with enhanced pseudocapacitance for asymmetric supercapacitors, J. Colloid Interface Sci., 635(2023), p. 176. doi: 10.1016/j.jcis.2022.12.137
    [19]
    H. Lv, Z.Y. Xiao, S.R. Zhai, et al., Ni3S2 nanoparticles encapsulated in S-doped biomass-derived hierarchically porous carbon as an advanced electrode for excellent hybrid supercapacitors performance, Ind. Crops Prod., 194(2023), art. No. 116320. doi: 10.1016/j.indcrop.2023.116320
    [20]
    H. Lv, Z.Y. Xiao, S.R. Zhai, X.T. Wang, J.G. Hao, and Q.D. An, Cu x S particles loaded on S-doped 3D hierarchical porous carbon as an efficient electrode for superior asymmetric supercapacitors, J. Alloys Compd., 945(2023), art. No. 169332. doi: 10.1016/j.jallcom.2023.169332
    [21]
    H.D. Sun, L.L. Zheng, Y.R. Xi, S.R. Zhai, Q.D. An, and Z.Y. Xiao, Nickel-iron sulfide nanoparticles supported on biomass-derived N-doped hierarchical porous carbon as a robust electrode for supercapacitors, Electrochim. Acta, 466(2023), art. No. 143053. doi: 10.1016/j.electacta.2023.143053
    [22]
    Z.X. Lu, F. Ren, Z.Z. Guo, et al., Facile construction of core–shell Carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption, J. Colloid Interface Sci., 625(2022), p. 415. doi: 10.1016/j.jcis.2022.06.012
    [23]
    J.Y. Yusuf, H. Soleimani, N. Yahya, et al., Electromagnetic wave absorption of coconut fiber-derived porous activated carbon, Bol. Soc. Esp. Ceram. Vidrio, 61(2022), No. 5, p. 417. doi: 10.1016/j.bsecv.2021.02.003
    [24]
    N.X. Zhai, J.H. Luo, M.W. Xiao, Y.C. Zhang, W.X. Yan, and Y. Xu, In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption, Carbon, 203(2023), p. 416. doi: 10.1016/j.carbon.2022.12.004
    [25]
    J. Li, L. Wang, D. Zhang, et al., Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers, Mater. Chem. Front., 1(2017), No. 9, p. 1786. doi: 10.1039/C7QM00067G
    [26]
    J.J. Pan, W.J. Tu, S.H. Ma, et al., Improvement of multiple attenuation characteristics of two-dimensional lamellar ferrocobalt@carbon nanocomposites as excellent electromagnetic wave absorbers, Dalton Trans., 51(2022), No. 25, p. 9793. doi: 10.1039/D2DT01503J
    [27]
    Y. Li, Y.S. Qin, G.L. Wu, Y.C. Zheng, and Q.F. Ban, Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption, J. Colloid Interface Sci., 623(2022), p. 1002. doi: 10.1016/j.jcis.2022.05.109
    [28]
    P. Wu, Z.Y. Wang, N.S. Bolan, H.L. Wang, Y.J. Wang, and W.F. Chen, Visualizing the development trend and research frontiers of biochar in 2020: A scientometric perspective, Biochar, 3(2021), No. 4, p. 419. doi: 10.1007/s42773-021-00120-3
    [29]
    D.M. Zhang, W. He, G.Q. Quan, et al., Sterculia lychnophora seed-derived porous carbon@CoFe2O4 composites with efficient microwave absorption performance, Appl. Surf. Sci., 607(2023), art. No. 155027. doi: 10.1016/j.apsusc.2022.155027
    [30]
    J.J. Lv, L.M. Wang, R.S. Li, et al., Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction, ACS Catal., 11(2021), No. 23, p. 14338. doi: 10.1021/acscatal.1c03960
    [31]
    Y.Y. Jin, K. Tian, L. Wei, X.Y. Zhang, and X. Guo, Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors, J. Mater. Chem. A, 4(2016), No. 41, p. 15968. doi: 10.1039/C6TA05872H
    [32]
    C. Cui, W.H. Bai, S. Jiang, et al., FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption, Ind. Eng. Chem. Res. 61(2022), No. 28, p. 10078.
    [33]
    T. Wang, Y.B. Xu, Y.F. Li, et al., Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite, ACS Catal., 11(2021), No. 6, p. 3553. doi: 10.1021/acscatal.1c00169
    [34]
    S.Q. Shi, S.J. Hao, C. Yang, Y.B. Chen, H.R. Chu, and S.L. Dai, Enhanced microwave absorption properties of reduced graphene oxide/TiO2 nanowire composites synthesized via simultaneous carbonation and hydrogenation, J. Mater. Chem. C, 10(2022), No. 25, p. 9586. doi: 10.1039/D2TC01473D
    [35]
    Y.N. Shi, X.Y. Ding, K.C. Pan, Z.H. Gao, J. Du, and J. Qiu, A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands, J. Mater. Chem. A, 10(2022), No. 14, p. 7705. doi: 10.1039/D2TA00030J
    [36]
    Y.L. Huang, W.J. Wang, X.W. Hou, et al., Salt-templated synthesis of CuO/Carbon nanosheets for efficient microwave absorption, Appl. Surf. Sci., 598(2022), art. No. 153779. doi: 10.1016/j.apsusc.2022.153779
    [37]
    T.C. Wei, X.Z. Zhu, J.N. Xu, C.X. Kan, and D.N. Shi, Porous molybdenum compound design for strong microwave absorption, Langmuir, 39(2023), No. 2, p. 890. doi: 10.1021/acs.langmuir.2c03095
    [38]
    H. Wang, X.H. Zhang, Y.H. Tang, et al., Using silk-derived magnetic carbon nanocomposites as highly efficient Nanozymes and electromagnetic absorbing agents, Chin. Chem. Lett., 34(2023), No. 9, art. No. 108084. doi: 10.1016/j.cclet.2022.108084
    [39]
    X.G. Su, M.J. Han, Y.N. Liu, J. Wang, C.B. Liang, and Y.Q. Liu, In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering, J. Colloid Interface Sci., 628(2022), Part B, p. 984. doi: 10.1016/j.jcis.2022.08.094
    [40]
    W.B. Deng, T.H. Li, H. Li, et al., Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior, J. Colloid Interface Sci., 618(2022), p. 129. doi: 10.1016/j.jcis.2022.03.071
    [41]
    J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
    [42]
    J. Dong, W.H. Xu, S.B. Liu, et al., Lignin-derived biochar to support CoFe2O4: Effective activation of peracetic acid for sulfamethoxazole degradation, Chem. Eng. J., 430(2022), art. No. 132868. doi: 10.1016/j.cej.2021.132868
    [43]
    T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu, and P.F. Yin, Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites, Chem. Eng. J., 457(2023), art. No. 140876. doi: 10.1016/j.cej.2022.140876
    [44]
    Q.J. Wang, J.N. Wang, Y.Z. Zhao, et al., NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study, Chem. Eng. J., 430(2022), art. No. 132814. doi: 10.1016/j.cej.2021.132814
    [45]
    X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable Co x Ni y encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano Micro Lett., 12(2020), No. 1, art. No. 102. doi: 10.1007/s40820-020-00432-2
    [46]
    S. Zhang, C.J. Wang, T.H. Gao, et al., Optimizing electromagnetic interference shielding of ultrathin nanoheterostructure textiles through interfacial engineering, ACS Appl. Mater. Interfaces, 15(2023), No. 12, p. 15965. doi: 10.1021/acsami.2c22143
    [47]
    Z. Su, S. Yi, W.Y. Zhang, et al., Magnetic-dielectric complementary Fe–Co–Ni alloy/carbon composites for high-attenuation C-band microwave absorption via carbothermal reduction of solid-solution precursor, Adv. Electron. Mater., 9(2023), No. 2, art. No. 2201159. doi: 10.1002/aelm.202201159
    [48]
    Y.C. Sun, T.T. Wang, C.H. Han, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies, Bioresour. Technol., 344(2022), art. No. 126186. doi: 10.1016/j.biortech.2021.126186
    [49]
    Y.P. Zhao, X.Q. Zuo, Y. Guo, et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption, Nano Micro Lett., 13(2021), No. 1, art. No. 144. doi: 10.1007/s40820-021-00667-7
    [50]
    Y.J. Wang, Z.B. Pang, H. Xu, et al., High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2–18 GHz, J. Colloid Interface Sci., 620(2022), p. 107. doi: 10.1016/j.jcis.2022.04.011
    [51]
    X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
    [52]
    Y. Fei, X.Y. Wang, M.S. Yuan, M. Liang, Y. Chen, and H.W. Zou, Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption, Ind. Eng. Chem. Res., 61(2022), No. 4, p. 1684. doi: 10.1021/acs.iecr.1c03585
    [53]
    M. Zhang, S.N. Song, Y.M. Liu, Z.X. Hou, W.Y. Tang, and S.N. Li, Microstructural design of necklace-like Fe3O4/multiwall carbon nanotube (MWCNT) composites with enhanced microwave absorption performance, Materials (Basel), 14(2021), No. 17, art. No. 4783. doi: 10.3390/ma14174783
    [54]
    J.R. Yao, L. Zhang, F. Yang, et al., Superhydrophobic Ti3C2T x MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment, Chem. Eng. J., 446(2022), art. No. 136945. doi: 10.1016/j.cej.2022.136945
    [55]
    Y.J. Zou, X.Z. Huang, B.H. Fan, J.L. Yue, and Y. Liu, Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer, Appl. Surf. Sci., 600(2022), art. No. 154046. doi: 10.1016/j.apsusc.2022.154046
    [56]
    X.Y. Deng, S. Gao, Y. Liu, Y.L. Bao, Y.F. Zhu, and Y.Q. Fu, Cellular-like sericin-derived carbon decorated reduced graphene oxide for tunable microwave absorption, Appl. Surf. Sci., 599(2022), art. No. 154063. doi: 10.1016/j.apsusc.2022.154063
    [57]
    Y.L. Hou, Z.Z. Sheng, C. Fu, J. Kong, and X.T. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption, Nat. Commun., 13(2022), No. 1, art. No. 1227. doi: 10.1038/s41467-022-28906-4
    [58]
    J.F. Fang, H.L. Lv, B. Zhao, et al., Selective assembly of magnetic nano-antenna for electromagnetic dissipation, J. Mater. Chem. A, 10(2022), No. 20, p. 10909. doi: 10.1039/D2TA02186B
    [59]
    Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
    [60]
    W.J. Mao, X.T. Wang, X.L. Hu, Z.H. Lin, and Z.M. Su, Activation of peroxymonosulfate by co-metal–organic frameworks as catalysts for degradation of organic pollutants, Ind. Eng. Chem. Res., 60(2021), No. 36, p. 13223. doi: 10.1021/acs.iecr.1c02259
    [61]
    Y. Wang, Y.N. Gao, T.N. Yue, X.D. Chen, R.C. Che, and M. Wang, Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption, J. Colloid Interface Sci., 607(2022), p. 210. doi: 10.1016/j.jcis.2021.08.206
    [62]
    J.N. Hu, C.Y. Liang, J.D. Li, et al., Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci., 570(2021), art. No. 151270. doi: 10.1016/j.apsusc.2021.151270
    [63]
    L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. doi: 10.1016/j.cej.2021.132547
    [64]
    X. Luo, H.F. Li, J.H. Sun, et al., EM waves absorption properties of nitrogenous porous carbon derived from PANI fiber clusters carbonization, Microporous Mesoporous Mater., 339(2022), art. No. 112000. doi: 10.1016/j.micromeso.2022.112000
    [65]
    Y.Y. Wang, J.L. Zhu, N. Li, et al., Carbon aerogel microspheres with in situ mineralized TiO2 for efficient microwave absorption, Nano Res., 15(2022), No. 8, p. 7723. doi: 10.1007/s12274-022-4494-0
    [66]
    J. Liang, C.W. Li, X. Cao, et al., Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers, Nano Res., 15(2022), No. 8, p. 6831. doi: 10.1007/s12274-022-4511-3
    [67]
    J. Liu, Y.S. Gu, L.L. Gao, et al., Hollow multi-shell SiC@C@PANI nanoparticles with broadband microwave absorption performance, Appl. Surf. Sci., 613(2023), art. No. 156098. doi: 10.1016/j.apsusc.2022.156098
    [68]
    Z.X. Li, W. Yang, B. Jiang, et al., Engineering of the core-shell boron Nitride@Nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 15(2023), No. 5, p. 7578. doi: 10.1021/acsami.2c20766
    [69]
    N.X. Zhai, J.H. Luo, P.C. Shu, J. Mei, X.P. Li, and W.X. Yan, 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption, Nano Res., 16(2023), No. 7, p. 10698. doi: 10.1007/s12274-023-5777-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(528) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return