Zhaoning Yang, Xiaoxin Shu, Di Guo, Jing Wang, Hui Bian, and Yanmin Jia, Progress in the research on organic piezoelectric catalysts for dye decomposition, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 245-260. https://doi.org/10.1007/s12613-023-2773-8
Cite this article as:
Zhaoning Yang, Xiaoxin Shu, Di Guo, Jing Wang, Hui Bian, and Yanmin Jia, Progress in the research on organic piezoelectric catalysts for dye decomposition, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 245-260. https://doi.org/10.1007/s12613-023-2773-8
Invited Review

Progress in the research on organic piezoelectric catalysts for dye decomposition

+ Author Affiliations
  • Corresponding authors:

    Zhaoning Yang    E-mail: yznnwpu@foxmail.com

    Yanmin Jia    E-mail: ymjia@zjnu.edu.cn

  • Received: 3 July 2023Revised: 30 October 2023Accepted: 2 November 2023Available online: 3 November 2023
  • Organic contaminants have posed a direct and substantial risk to human wellness and the environment. In recent years, piezoelectric catalysis has evolved as a novel and effective method for decomposing these contaminants. Although piezoelectric materials offer a wide range of options, most related studies thus far have focused on inorganic materials and have paid little attention to organic materials. Organic materials have advantages, such as being lightweight, inexpensive, and easy to process, over inorganic materials. Therefore, this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials, highlighting their catalytic efficiency in addressing various pollutants. In addition, the applications of organic materials in piezoelectric catalysis for water decomposition to produce hydrogen, disinfect bacteria, treat tumors, and reduce carbon dioxide are presented. Finally, future developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.
  • loading
  • [1]
    Y.M. Jia, X.X. Wang, Q.C. Zhang, and Z. Wu, Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling, Acta Phys. Sin., 72(2023), No. 8, art. No. 087701. doi: 10.7498/aps.72.20222078
    [2]
    Q.C. Zhang, Y.M. Jia, J. Chen, et al., Strongly enhanced piezocatalysis of BiFeO3/ZnO heterostructure nanomaterials, New J. Chem., 47(2023), No. 7, p. 3471. doi: 10.1039/D2NJ05732H
    [3]
    Y. Wang, X.R. Wen, Y.M. Jia, et al., Piezo-catalysis for nondestructive tooth whitening, Nat. Commun., 11(2020), No. 1, art. No. 1328. doi: 10.1038/s41467-020-15015-3
    [4]
    S.S. Wang, Z. Wu, J. Chen, et al., Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation, Ceram. Int., 45(2019), No. 9, p. 11703. doi: 10.1016/j.ceramint.2019.03.045
    [5]
    X.L. Xu, Z. Wu, L.B. Xiao, et al., Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis, J. Alloys Compd., 762(2018), p. 915. doi: 10.1016/j.jallcom.2018.05.279
    [6]
    X. Cheng, Z.Y. Liu, Q.F. Jing, et al., Porous (K0.5Na0.5)0.94Li0.06NbO3-polydimethylsiloxane piezoelectric composites harvesting mechanical energy for efficient decomposition of dye wastewater, J. Colloid Interface Sci., 629(2023), p. 11. doi: 10.1016/j.jcis.2022.08.131
    [7]
    X.L. Xu, L.B. Xiao, Z. Wu, et al., Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite, Nano Energy, 78(2020), art. No. 105351. doi: 10.1016/j.nanoen.2020.105351
    [8]
    X.Q. Dai, L. Chen, Z.Y. Li, et al., CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation, J. Colloid Interface Sci., 603(2021), p. 220. doi: 10.1016/j.jcis.2021.06.107
    [9]
    W.T. Yein, Q. Wang, Y. Li, and X.H. Wu, Piezoelectric potential induced the improved micro-pollutant dye degradation of Co doped MoS2 ultrathin nanosheets in dark, Catal. Commun., 125(2019), p. 61. doi: 10.1016/j.catcom.2019.03.023
    [10]
    W.Q. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y.H. Wang, and Y. Yang, Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect, ACS Appl. Mater. Interfaces, 11(2019), No. 31, p. 27862. doi: 10.1021/acsami.9b07857
    [11]
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, and M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview, RSC Adv., 4(2014), No. 70, p. 37003. doi: 10.1039/C4RA06658H
    [12]
    M. Ismail, Z. Wu, L.H. Zhang, et al., High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition, Chemosphere, 228(2019), p. 212. doi: 10.1016/j.chemosphere.2019.04.121
    [13]
    H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
    [14]
    D. Pathania, R. Katwal, and H. Kaur, Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 358. doi: 10.1007/s12613-016-1245-9
    [15]
    M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
    [16]
    D.M. Liu, C.C. Jin, Y.T. Zhang, Y. He, and F. Wang, Integrated piezo-photocatalysis of electrospun Bi4Ti3O12 nanostructures by bi-harvesting visible light and ultrasonic energies, Ceram. Int., 47(2021), No. 6, p. 7692. doi: 10.1016/j.ceramint.2020.11.112
    [17]
    X.F. Zhou, B. Shen, A. Lyubartsev, J.W. Zhai, and N. Hedin, Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis, Nano Energy, 96(2022), art. No. 107141. doi: 10.1016/j.nanoen.2022.107141
    [18]
    W.S. Luo, J.S. Ying, S.G. Yu, et al., ZnS: Cu powders with strong visible-light photocatalysis and pyro-catalysis for room-temperature dye decomposition, Ceram. Int., 46(2020), No. 8, p. 12096. doi: 10.1016/j.ceramint.2020.01.253
    [19]
    S. Masimukku, Y.C. Hu, Z.H. Lin, S.W. Chan, T.M. Chou, and J.M. Wu, High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance, Nano Energy, 46(2018), p. 338. doi: 10.1016/j.nanoen.2018.02.008
    [20]
    Y. Liu, J.N. Qin, L.L. Lu, J. Xu, and X.L. Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 525. doi: 10.1007/s12613-022-2491-7
    [21]
    M. Zhou, L.J. Liang, D.Z. Lu, et al., Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2044. doi: 10.1007/s12613-023-2671-0
    [22]
    X.Z. Zhang, Y.P. Xia, X. Liu, Y.M. Zhong, H.B. Zhao, and P.H. Wang, Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1186. doi: 10.1007/s12613-019-1828-3
    [23]
    Z.Y. Yao, H.J. Sun, S.B. Xiao, Y.L. Hu, X.F. Liu, and Y. Zhang, Synergetic piezo-photocatalytic effect in a Bi2MoO6/BiOBr composite for decomposing organic pollutants, Appl. Surf. Sci., 560(2021), art. No. 150037. doi: 10.1016/j.apsusc.2021.150037
    [24]
    Z.Y. Li, Q.L. Zhang, L.K. Wang, J.Y. Yang, Y. Wu, and Y.M. He, Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy, Ultrason. Sonochem., 78(2021), art. No. 105729. doi: 10.1016/j.ultsonch.2021.105729
    [25]
    K.S. Hong, H.F. Xu, H. Konishi, and X.C. Li, Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers, J. Phys. Chem. C, 116(2012), No. 24, p. 13045. doi: 10.1021/jp211455z
    [26]
    J.P. Ma, J. Ren, Y.M. Jia, et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition, Nano Energy, 62(2019), p. 376. doi: 10.1016/j.nanoen.2019.05.058
    [27]
    H.L. You, Z. Wu, Y.M. Jia, et al., High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition, Chemosphere, 183(2017), p. 528. doi: 10.1016/j.chemosphere.2017.05.130
    [28]
    J. Yuan, X.Y. Huang, L.L. Zhang, et al., Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis, Appl. Catal. B, 278(2020), art. No. 119291. doi: 10.1016/j.apcatb.2020.119291
    [29]
    Y.D. Yao, Y.M. Jia, Q.C. Zhang, et al., Piezoelectric BaTiO3 with the milling treatment for highly efficient piezocatalysis under vibration, J. Alloys Compd., 905(2022), art. No. 164234. doi: 10.1016/j.jallcom.2022.164234
    [30]
    C.Y. Yu, M.X. Tan, Y. Li, et al., Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering, J. Colloid Interface Sci., 596(2021), p. 288. doi: 10.1016/j.jcis.2021.03.040
    [31]
    H.G. Wei, H. Wang, Y.J. Xia, et al., An overview of lead-free piezoelectric materials and devices, J. Mater. Chem. C, 6(2018), No. 46, p. 12446. doi: 10.1039/C8TC04515A
    [32]
    L.F. Xie, G.L. Wang, C. Jiang, F.P. Yu, and X. Zhao, Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials, Crystals, 11(2021), No. 6, art. No. 644. doi: 10.3390/cryst11060644
    [33]
    R.Q. Yang, N. Liang, X.Y. Chen, et al., Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 150. doi: 10.1007/s12613-020-2131-z
    [34]
    L. Chen, Y.M. Jia, J.H. Zhao, et al., Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition, J. Colloid Interface Sci., 586(2021), p. 758. doi: 10.1016/j.jcis.2020.10.145
    [35]
    H.L. You, Y.M. Jia, Z. Wu, et al., Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis, Electrochem. Commun., 79(2017), p. 55. doi: 10.1016/j.elecom.2017.04.017
    [36]
    P.J. Curie and J. Curie, Crystal physics: Development by pressure of polar electricity in hemihedral crystals with inclined faces, CR Acad Sci., 91(1880), p. 294.
    [37]
    H.J. Kawai, The piezoelectricity of poly(vinylidene fluoride), Jpn. J. Appl. Phys., 8(1969), No. 7, p. 975. doi: 10.1143/JJAP.8.975
    [38]
    Z.L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312(2006), No. 5771, p. 242. doi: 10.1126/science.1124005
    [39]
    J. Cheng, Y. Chen, J.W. Wu, X.R. Ji, and S.H. Wu, 3D printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array, Sensors, 19(2019), No. 19, art. No. 4078. doi: 10.3390/s19194078
    [40]
    Z. Wang, Z. Liu, G. Zhao, et al., Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors, ACS Nano, 16(2022), No. 1, p. 1661. doi: 10.1021/acsnano.1c10678
    [41]
    H.C. Liu, C.G. Quan, C.J. Tay, T. Kobayashi, and C.K. Lee, A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations, Phys. Procedia, 19(2011), p. 129. doi: 10.1016/j.phpro.2011.06.136
    [42]
    K.I. Park, J.H. Son, G.T. Hwang, et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates, Adv. Mater., 26(2014), No. 16, p. 2514. doi: 10.1002/adma.201305659
    [43]
    M.G. Kang, W.S. Jung, C.Y. Kang, and S.J. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators, 5(2016), No. 1, art. No. 5. doi: 10.3390/act5010005
    [44]
    A. Koka, Z. Zhou, and H.A. Sodano, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ. Sci., 7(2014), No. 1, p. 288. doi: 10.1039/C3EE42540A
    [45]
    K.K. Sappati and S. Bhadra, Piezoelectric polymer and paper substrates: A review, Sensors, 18(2018), No. 11, art. No. 3605. doi: 10.3390/s18113605
    [46]
    Z.L. Cui, N.T. Hassankiadeh, Y.B. Zhuang, E. Drioli, and Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes, Prog. Polym. Sci., 51(2015), p. 94. doi: 10.1016/j.progpolymsci.2015.07.007
    [47]
    S. Bayan, D. Bhattacharya, R.K. Mitra, and S.K. Ray, Self-powered flexible photodetectors based on Ag nanoparticle-loaded g-C3N4 nanosheets and PVDF hybrids: Role of plasmonic and piezoelectric effects, Nanotechnology, 31(2020), No. 36, art. No. 365401. doi: 10.1088/1361-6528/ab9470
    [48]
    N. Soin, P.F. Zhao, K. Prashanthi, et al., High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6), Nano Energy, 30(2016), p. 470. doi: 10.1016/j.nanoen.2016.10.040
    [49]
    U. Yaqoob, A.S.M.I. Uddin, and G.S. Chung, A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites, Appl. Surf. Sci., 405(2017), p. 420. doi: 10.1016/j.apsusc.2017.01.314
    [50]
    M. Khalifa and S. Anandhan, PVDF nanofibers with embedded polyaniline–graphitic carbon nitride nanosheet composites for piezoelectric energy conversion, ACS Appl. Nano Mater., 2(2019), No. 11, p. 7328. doi: 10.1021/acsanm.9b01812
    [51]
    M. Khalifa, A. Mahendran, and S. Anandhan, Synergism of graphitic-carbon nitride and electrospinning on the physico-chemical characteristics and piezoelectric properties of flexible poly(vinylidene fluoride) based nanogenerator, J. Polym. Res., 26(2019), No. 3, art. No. 73. doi: 10.1007/s10965-019-1738-0
    [52]
    K. Roy, S. Jana, S.K. Ghosh, et al., Three-dimensional MOF-assisted self-polarized ferroelectret: An effective autopowered remote healthcare monitoring approach, Langmuir, 36(2020), No. 39, p. 11477. doi: 10.1021/acs.langmuir.0c01749
    [53]
    S. Ojha, S. Paria, S.K. Karan, et al., Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators, Nanoscale, 11(2019), No. 47, p. 22989. doi: 10.1039/C9NR08315D
    [54]
    H. Fashandi, M.M. Abolhasani, P. Sandoghdar, N. Zohdi, Q.X. Li, and M. Naebe, Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals, Cellulose, 23(2016), No. 6, p. 3625. doi: 10.1007/s10570-016-1070-3
    [55]
    J. Song, B. Yang, W. Zeng, et al., Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting, Adv. Mater. Technol., 3(2018), No. 6, art. No. 1800016. doi: 10.1002/admt.201800016
    [56]
    Y. Ahn, J.Y. Lim, S.M. Hong, et al., Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), J. Phys. Chem. C, 117(2013), No. 22, p. 11791. doi: 10.1021/jp4011026
    [57]
    Y. Yang, H. Pan, G.Z. Xie, et al., Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring, Sens. Actuat. A Phys., 301(2020), art. No. 111789. doi: 10.1016/j.sna.2019.111789
    [58]
    H. Kim, T. Fernando, M.Y. Li, Y.R. Lin, and T.L.B. Tseng, Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites, J. Compos. Mater., 52(2018), No. 2, p. 197. doi: 10.1177/0021998317704709
    [59]
    K.M. Shi, B. Chai, H.Y. Zou, et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators, Nano Energy, 80(2021), art. No. 105515. doi: 10.1016/j.nanoen.2020.105515
    [60]
    S. Bodkhe, P.S.M. Rajesh, F.P. Gosselin, and D. Therriault, Simultaneous 3D printing and poling of PVDF and its nanocomposites, ACS Appl. Energy Mater., 1(2018), No. 6, p. 2474. doi: 10.1021/acsaem.7b00337
    [61]
    E. Kar, N. Bose, B. Dutta, S. Banerjee, N. Mukherjee, and S. Mukherjee, 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester, Energy Convers. Manage., 184(2019), p. 600. doi: 10.1016/j.enconman.2019.01.073
    [62]
    R. Ding, X.L. Zhang, G. Chen, et al., High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride), Nano Energy, 37(2017), p. 126. doi: 10.1016/j.nanoen.2017.05.010
    [63]
    B. Mahanty, S.K. Ghosh, S. Jana, Z. Mallick, S. Sarkar, and D. Mandal, ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring, Sustainable Energy Fuels, 5(2021), No. 17, p. 4389. doi: 10.1039/D1SE00444A
    [64]
    C.Q. Gao, Z.H. Long, T.Y. Zhong, S. Liang, and L.L. Xing, A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film, J. Phys. D: Appl. Phys., 55(2022), No. 19, art. No. 194004. doi: 10.1088/1361-6463/ac5192
    [65]
    P. Gowdhaman, V. Annamalai, H.M. Pandya, and P.R. Kumar, Significance of micro and nano PZT particles on dielectric and piezoelectric properties of PZT-PVDF composites, Int. J. Adv. Sci. Res., 2(2016), No. 3, art. No. 64. doi: 10.7439/ijasr.v2i3.3099
    [66]
    J. Chang, Y. Shen, X.C. Chu, et al., Large d33 and enhanced ferroelectric/dielectric properties of poly(vinylidene fluoride)-based composites filled with Pb(Zr0.52Ti0.48)O3 nanofibers, RSC Adv., 5(2015), No. 63, p. 51302. doi: 10.1039/C5RA07932B
    [67]
    N. Chamankar, R. Khajavi, A.A. Yousefi, A. Rashidi, and F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications, Ceram. Int., 46(2020), No. 12, p. 19669. doi: 10.1016/j.ceramint.2020.03.210
    [68]
    P. Fakhri, B. Amini, R. Bagherzadeh, et al., Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output, RSC Adv., 9(2019), No. 18, p. 10117. doi: 10.1039/C8RA10315A
    [69]
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, Chem. Soc. Rev., 40(2011), No. 7, p. 3941. doi: 10.1039/c0cs00108b
    [70]
    W.S. Chen, H.P. Yu, S.Y. Lee, T. Wei, J. Li, and Z.J. Fan, Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage, Chem. Soc. Rev., 47(2018), No. 8, p. 2837. doi: 10.1039/C7CS00790F
    [71]
    S. Rajala, T. Siponkoski, E. Sarlin, et al., Cellulose nanofibril film as a piezoelectric sensor material, ACS Appl. Mater. Interfaces, 8(2016), No. 24, p. 15607. doi: 10.1021/acsami.6b03597
    [72]
    S.K. Karan, D. Mandal, and B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester, Nanoscale, 7(2015), No. 24, p. 10655. doi: 10.1039/C5NR02067K
    [73]
    R.A. Surmenev, T. Orlova, R.V. Chernozem, et al., Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review, Nano Energy, 62(2019), p. 475. doi: 10.1016/j.nanoen.2019.04.090
    [74]
    S. Mohammadpourfazeli, S. Arash, A. Ansari, S.Y. Yang, K. Mallick, and R. Bagherzadeh, Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties, RSC Adv., 13(2023), No. 1, p. 370. doi: 10.1039/D2RA06774A
    [75]
    J.M. Wu, W.E. Chang, Y.T. Chang, and C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers, Adv. Mater., 28(2016), No. 19, p. 3718. doi: 10.1002/adma.201505785
    [76]
    B. Bagchi, N.A. Hoque, N. Janowicz, S. Das, and M.K. Tiwari, Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability, Nano Energy, 78(2020), art. No. 105339. doi: 10.1016/j.nanoen.2020.105339
    [77]
    W. Ma, B.H. Yao, W. Zhang, Y.Q. He, Y. Yu, and J.F. Niu, Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets, Chem. Eng. J., 415(2021), art. No. 129000. doi: 10.1016/j.cej.2021.129000
    [78]
    G. Singh, M. Sharma, and R. Vaish, Flexible Ag@LiNbO3/PVDF composite film for piezocatalytic dye/pharmaceutical degradation and bacterial disinfection, ACS Appl. Mater. Interfaces, 13(2021), No. 19, p. 22914. doi: 10.1021/acsami.1c01314
    [79]
    J.D. Shi, W. Zeng, Z.H. Dai, et al., Piezocatalytic foam for highly efficient degradation of aqueous organics, Small Sci., 1(2021), No. 2, art. No. 2000011. doi: 10.1002/smsc.202000011
    [80]
    J.J. Tian, Y.G. Hu, and J. Zhang, Chemiluminescence detection of permanganate index (CODMn)bya luminol-KMnO4 based reaction, J. Environ. Sci., 20(2008), No. 2, p. 252. doi: 10.1016/S1001-0742(08)60039-X
    [81]
    L.C. Wan, W.R. Tian, N.J. Li, et al., Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning, Nano Energy, 94(2022), art. No. 106930. doi: 10.1016/j.nanoen.2022.106930
    [82]
    X.M. Liao, X.Q. Chen, Y. Tang, et al., Enhanced piezocatalytic reactive oxygen species production activity and recyclability of the dual piezoelectric Cu3B2O6/PVDF composite membrane, ACS Appl. Mater. Interfaces, 15(2023), No. 1, p. 1286. doi: 10.1021/acsami.2c19083
    [83]
    H.X. He, Y.M. Fu, W.L. Zang, et al., A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean, Nano Energy, 31(2017), p. 37. doi: 10.1016/j.nanoen.2016.11.020
    [84]
    S. Verma, M. Sharma, and R. Vaish, Photo-piezocatalysis in electrospun PVDF + WS2 membrane, Environ. Sci.: Nano, 9(2022), No. 10, p. 3885. doi: 10.1039/D2EN00699E
    [85]
    C. Porwal, S. Verma, M. Kumar, V.S. Chauhan, and R. Vaish, Bismuth vanadate-reduced graphene oxide-polyvinylidene fluoride electrospun composite membrane for piezo-photocatalysis, Nano Struct. Nano Objects, 34(2023), art. No. 100969. doi: 10.1016/j.nanoso.2023.100969
    [86]
    F. Orudzhev, S. Ramazanov, D. Sobola, et al., Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation, Nano Energy, 90(2021), art. No. 106586. doi: 10.1016/j.nanoen.2021.106586
    [87]
    J.Q. Wen, J. Xie, X.B. Chen, and X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391(2017), p. 72. doi: 10.1016/j.apsusc.2016.07.030
    [88]
    J.W. Fu, J.G. Yu, C.J. Jiang, and B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8(2018), No. 3, art. No. 1701503. doi: 10.1002/aenm.201701503
    [89]
    H. Lei, M.X. Wu, F. Mo, et al., Efficiently harvesting the ultrasonic vibration energy of two-dimensional graphitic carbon nitride for piezocatalytic degradation of dichlorophenols, Environ. Sci.: Nano, 8(2021), No. 5, p. 1398. doi: 10.1039/D0EN01028F
    [90]
    H. Lei, Q.S. He, M.X. Wu, Y.Y. Xu, P.F. Sun, and X.P. Dong, Piezoelectric polarization promoted spatial separation of photoexcited electrons and holes in two-dimensional g-C3N4 nanosheets for efficient elimination of chlorophenols, J. Hazard. Mater., 421(2022), art. No. 126696. doi: 10.1016/j.jhazmat.2021.126696
    [91]
    R.D. Tang, D.X. Gong, Y.Y. Zhou, et al., Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light, Appl. Catal. B, 303(2022), art. No. 120929. doi: 10.1016/j.apcatb.2021.120929
    [92]
    Y.Q. Shao, C.C. Liu, H.R. Ma, et al., Piezocatalytic performance difference of graphitic carbon nitride (g-C3N4) derived from different precursors, Chem. Phys. Lett., 801(2022), art. No. 139748. doi: 10.1016/j.cplett.2022.139748
    [93]
    Y.Q. Zheng, Y.M. Jia, H.M. Li, Z. Wu, and X.P. Dong, Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis, J. Mater. Sci., 55(2020), No. 30, p. 14787. doi: 10.1007/s10853-020-05001-x
    [94]
    O.S. Ekande and M. Kumar, New insight on interfacial charge transfer at graphitic carbon nitride/sodium niobate heterojunction under piezoelectric effect for the generation of reactive oxygen species, J. Colloid Interface Sci., 651(2023), p. 477. doi: 10.1016/j.jcis.2023.07.189
    [95]
    Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chem. Rev., 120(2020), No. 2, p. 1438. doi: 10.1021/acs.chemrev.9b00223
    [96]
    R. Freund, O. Zaremba, G. Arnauts, et al., The Current status of MOF and COF applications, Angew. Chem. Int. Ed., 60(2021), No. 45, p. 23975. doi: 10.1002/anie.202106259
    [97]
    B.L. Xu, Z.J. Huang, Y.H. Liu, S.S. Li, and H.Y. Liu, MOF-based nanomedicines inspired by structures of natural active components, Nano Today, 48(2023), art. No. 101690. doi: 10.1016/j.nantod.2022.101690
    [98]
    Z.H. Kang, M.S. Chen, E.Z. Lin, et al., Functionalized MIL-53 and its derivatives modified Bi2WO6 as effective piezocatalysts and membranes for adsorption and decomposition of organic pollutants, Sep. Purif. Technol., 306(2023), art. No. 122618. doi: 10.1016/j.seppur.2022.122618
    [99]
    S.H. Dong, L.Y. Wang, W.Y. Lou, et al., Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment, Ultrason. Sonochem., 91(2022), art. No. 106223. doi: 10.1016/j.ultsonch.2022.106223
    [100]
    S.J. Garibay and S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology, Chem. Commun., 46(2010), No. 41, p. 7700. doi: 10.1039/c0cc02990d
    [101]
    A. Dhakshinamoorthy, A. Santiago-Portillo, A.M. Asiri, and H. Garcia, Engineering UiO-66 metal organic framework for heterogeneous catalysis, ChemCatChem, 11(2019), No. 3, p. 899. doi: 10.1002/cctc.201801452
    [102]
    Z.M. Guo, N. Li, S.X. Zuo, et al., Construction of a novel metal–organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal, Sep. Purif. Technol., 289(2022), art. No. 120743. doi: 10.1016/j.seppur.2022.120743
    [103]
    Y.N. Wang, N.N. Zhang, R.H. Wang, et al., Bimetallic UiO-66-NH2(Zr–Hf) synergistic photocatalytic and piezoelectric effects for the degradation of rhodamine B, Dalton Trans., 52(2023), No. 29, p. 10079. doi: 10.1039/D3DT00993A
    [104]
    Z.L. Wu, Y.P. Wang, Z.K. Xiong, et al., Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine, Appl. Catal. B, 277(2020), art. No. 119136. doi: 10.1016/j.apcatb.2020.119136
    [105]
    Y. Liu, H. Cheng, M. Cheng, et al., The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment, Chem. Eng. J., 417(2021), art. No. 127914. doi: 10.1016/j.cej.2020.127914
    [106]
    L.J. Ruan, Y.M. Jia, J.F. Guan, et al., Highly piezocatalysis of metal–organic frameworks material ZIF-8 under vibration, Sep. Purif. Technol., 283(2022), art. No. 120159. doi: 10.1016/j.seppur.2021.120159
    [107]
    J. Cao, H. Zhou, C.P. Huang, Q. Wu, and W.F. Yao, ZIF-8-derived Zn, N-codoped porous carbon as a high-performance piezocatalyst for organic pollutant degradation and hydrogen production, J. Colloid Interface Sci., 645(2023), p. 794. doi: 10.1016/j.jcis.2023.04.117
    [108]
    Q. Guo, Y. Huang, M.D. Xu, et al., PTFE porous membrane technology: A comprehensive review, J. Membr. Sci., 664(2022), art. No. 121115. doi: 10.1016/j.memsci.2022.121115
    [109]
    J.X. Zhu, Y.L. Zhu, and X.H. Wang, A hybrid piezoelectric and triboelectric nanogenerator with PVDF nanoparticles and leaf-shaped microstructure PTFE film for scavenging mechanical energy, Adv. Mater. Interfaces, 5(2018), No. 2, art. No. 1700750. doi: 10.1002/admi.201700750
    [110]
    Y.F. Wang, Y.M. Xu, S.S. Dong, et al., Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species, Nat. Commun., 12(2021), No. 1, art. No. 3508. doi: 10.1038/s41467-021-23921-3
    [111]
    S. Zhang, H.M. Yu, X.T. Zhu, et al., Highly efficient piezocatalytic activity of poly(tetrafluoroethylene) for large-scale organic wastewater purification, ACS Appl. Polym. Mater., 5(2023), No. 5, p. 3585. doi: 10.1021/acsapm.3c00243
    [112]
    L.Y. He, L.J. Wu, S.T. Shen, et al., A novel Fe-PTFE magnetic composite prepared by ball milling for the efficient degradation of imidacloprid: Insights into interaction mechanisms based on ultrasonic piezoelectric catalysis, Sci. Total Environ., 864(2023), art. No. 161082. doi: 10.1016/j.scitotenv.2022.161082
    [113]
    X.D. Yan, M.P. Zheng, X. Gao, M.K. Zhu, and Y.D. Hou, High-performance lead-free ferroelectric BZT–BCT and its application in energy fields, J. Mater. Chem. C, 8(2020), No. 39, p. 13530. doi: 10.1039/D0TC03461D
    [114]
    X.C. Xie, Z.Y. Zhou, R.H. Liang, and X.L. Dong, Significantly enhanced piezoelectric performance in Bi4Ti3O12-based high-temperature piezoceramics via oxygen vacancy defects tailoring, J. Materiomics, 7(2021), No. 1, p. 59. doi: 10.1016/j.jmat.2020.08.003
    [115]
    J.F. Guan, Y.M. Jia, T. Chang, et al., Highly efficient piezo-catalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration, Sep. Purif. Technol., 286(2022), art. No. 120450. doi: 10.1016/j.seppur.2022.120450
    [116]
    C. Hu, F. Chen, Y.G. Wang, et al., Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong In-plane polarization, Adv. Mater., 33(2021), No. 24, art. No. e2101751. doi: 10.1002/adma.202101751
    [117]
    C. Hu, J.C. Hu, Z.J. Zhu, et al., Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting, Angew. Chem. Int. Ed., 61(2022), No. 43, art. No. e202212397. doi: 10.1002/anie.202212397
    [118]
    T.T. Xu, Z.H. Xia, H.G. Li, P. Niu, S.L. Wang, and L. Li, Constructing crystalline g‐C3N4/g‐C3N4−xSx isotype heterostructure for efficient photocatalytic and piezocatalytic performances, Energy Environ. Mater., 6(2023), No. 2, art. No. e12306. doi: 10.1002/eem2.12306
    [119]
    J. He, Z.R. Yi, Q.Q. Chen, Z. Li, J.Y. Hu, and M.S. Zhu, Harvesting mechanical energy induces piezoelectric polarization of MIL-100(Fe) for cocatalyst-free hydrogen production, Chem. Commun., 58(2022), No. 76, p. 10723. doi: 10.1039/D2CC03976A
    [120]
    S.Y. Zhao, M.S. Liu, Y.Q. Zhang, et al., Harvesting mechanical energy for hydrogen generation by piezoelectric metal–organic frameworks, Mater. Horiz., 9(2022), No. 7, p. 1978. doi: 10.1039/D1MH01973B
    [121]
    M.L. Xu, M. Lu, G.Y. Qin, et al., Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting, Angew. Chem. Int. Ed., 61(2022), No. 44, art. No. e202210700. doi: 10.1002/anie.202210700
    [122]
    R.Y. Wang, T. Zhou, X.W. Zhang, and L. Liu, Force-responsive antibiofouling strategy based on the ultrasound-controlled piezoelectric effect, Appl. Surf. Sci., 603(2022), art. No. 154467. doi: 10.1016/j.apsusc.2022.154467
    [123]
    Z.X. Zhu, X. Gou, L.Y. Liu, et al., Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing, Acta Biomater., 157(2023), p. 566. doi: 10.1016/j.actbio.2022.11.061
    [124]
    K. Xie, Z.A. Zhou, Y. Guo, et al., Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity, Adv. Healthc. Mater., 8(2019), No. 5, art. No. 1801465. doi: 10.1002/adhm.201801465
    [125]
    A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, D. Ponnamma, and M.K. Hassan, Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles, CJ. Carbon Res., 3(2017), No. 4, art. No. 30.
    [126]
    H.L. Su, C.C. Chou, D.J. Hung, et al., The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay, Biomaterials, 30(2009), No. 30, p. 5979. doi: 10.1016/j.biomaterials.2009.07.030
    [127]
    C.J. Shuai, G.F. Liu, Y.W. Yang, et al., A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold, Nano Energy, 74(2020), art. No. 104825. doi: 10.1016/j.nanoen.2020.104825
    [128]
    L.H. Cai, J.J. Du, F.P. Han, et al., Piezoelectric metal–organic frameworks based sonosensitizer for enhanced nanozyme catalytic and sonodynamic therapies, ACS Nano, 17(2023), No. 8, p. 7901. doi: 10.1021/acsnano.3c01856
    [129]
    S.L. Zhang, C. Liu, Z.X. Li, et al., Sonoactivated cascade Fenton reaction enhanced by synergistic modulation of electron–hole separation for improved tumor therapy, Adv. Healthc. Mater., 12(2023), No. 26, art. No. e2300982. doi: 10.1002/adhm.202300982
    [130]
    M. Yuan, S. Liang, Y. Zhou, et al., A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy, Nano Lett., 21(2021), No. 14, p. 6042. doi: 10.1021/acs.nanolett.1c01220
    [131]
    H.N. Huang, R. Shi, Z.H. Li, J.Q. Zhao, C.L. Su, and T.R. Zhang, Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas–water boundary, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200802. doi: 10.1002/anie.202200802
    [132]
    Q.L. Xu, Z.H. Xia, J.M. Zhang, et al., Recent advances in solar-driven CO2 reduction over g-C3N4-based photocatalysts, Carbon Energy, 5(2023), No. 2, art. No. e205. doi: 10.1002/cey2.205
    [133]
    Z.Y. Chang, P. Wang, J.L. Zhang, K.X. Jiao, Y.Q. Zhang, and Z.J. Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1402. doi: 10.1007/s12613-018-1694-4
    [134]
    Z.J. Wei, T. Ji, X.M. Zhou, et al., Synergistic enhancement of photocatalytic CO2 reduction by built-in electric field/piezoelectric effect and surface plasmon resonance via PVDF/CdS/Ag heterostructure, Small, 19(2023), No. 52, art. No. e2304202. doi: 10.1002/smll.202304202
    [135]
    C. Hu, H.Y. Sun, X.M. Jia, H.L. Lin, J. Cao, and S.F. Chen, Piezoelectric polarization and empty conduction band of zinc sulfide: Structure modulation on graphitic carbon nitride for carbon dioxide reduction to methane, ChemPhotoChem, 6(2022), No. 11, art. No. e202200150. doi: 10.1002/cptc.202200150
    [136]
    Q.C. Zhang, Y.M. Jia, W.W. Wu, et al., Review on strategies toward efficient piezocatalysis of BaTiO3 nanomaterials for wastewater treatment through harvesting vibration energy, Nano Energy, 113(2023), art. No. 108507. doi: 10.1016/j.nanoen.2023.108507
    [137]
    J.F. Guan, Y.M. Jia, J.L. Cao, et al., Enhancement of piezoelectric catalysis of Na0.5Bi0.5TiO3 with electric poling for dye decomposition, Ceram. Int., 48(2022), No. 3, p. 3695. doi: 10.1016/j.ceramint.2021.10.151
    [138]
    M.D. Zhu, S.Q. Li, H.F. Zhang, et al., Diffused phase transition boosted dye degradation with Ba (ZrxTi1−x)O3 solid solutions through piezoelectric effect, Nano Energy, 89(2021), art. No. 106474. doi: 10.1016/j.nanoen.2021.106474
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1794) PDF Downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return