Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu, and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1350-1363. https://dx.doi.org/10.1007/s12613-023-2777-4
Cite this article as: Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu, and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1350-1363. https://dx.doi.org/10.1007/s12613-023-2777-4

Relationship between the unique microstructures and behaviors of high-entropy alloys

  • High-entropy alloys (HEAs), which were introduced as a pioneering concept in 2004, have captured the keen interest of numerous researchers. Entropy, in this context, can be perceived as representing disorder and randomness. By contrast, elemental compositions within alloy systems occupy specific structural sites in space, a concept referred to as structure. In accordance with Shannon entropy, structure is analogous to information. Generally, the arrangement of atoms within a material, termed its structure, plays a pivotal role in dictating its properties. In addition to expanding the array of options for alloy composites, HEAs afford ample opportunities for diverse structural designs. The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numerous examples. These features include remarkably high fracture strength with excellent ductility, antiballistic capability, exceptional radiation resistance, and corrosion resistance. In this paper, we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return