Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu,  and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1350-1363. https://doi.org/10.1007/s12613-023-2777-4
Cite this article as:
Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu,  and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1350-1363. https://doi.org/10.1007/s12613-023-2777-4
Invited Review

Relationship between the unique microstructures and behaviors of high-entropy alloys

+ Author Affiliations
  • Corresponding author:

    Yong Zhang    E-mail: drzhangy@ustb.edu.cn

  • Received: 28 August 2023Revised: 1 November 2023Accepted: 2 November 2023Available online: 3 November 2023
  • High-entropy alloys (HEAs), which were introduced as a pioneering concept in 2004, have captured the keen interest of numerous researchers. Entropy, in this context, can be perceived as representing disorder and randomness. By contrast, elemental compositions within alloy systems occupy specific structural sites in space, a concept referred to as structure. In accordance with Shannon entropy, structure is analogous to information. Generally, the arrangement of atoms within a material, termed its structure, plays a pivotal role in dictating its properties. In addition to expanding the array of options for alloy composites, HEAs afford ample opportunities for diverse structural designs. The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numerous examples. These features include remarkably high fracture strength with excellent ductility, antiballistic capability, exceptional radiation resistance, and corrosion resistance. In this paper, we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
  • loading
  • [1]
    H.L. Zhuang, Sudoku-inspired high-Shannon-entropy alloys, Acta Mater., 225(2022), art. No. 117556. doi: 10.1016/j.actamat.2021.117556
    [2]
    Y. Zhang, High Entropy Materials-Microstructures and Properties, IntechOpen Press, Rijeka, 2023.
    [3]
    Y.S. Li, S.C. Zhou, and Y. Zhang, Future research directions and applications for high-entropy materials, [in] J. Brechtl and P.K. Liaw, eds., High-Entropy Materials : Theory , Experiments , and Applications, Springer, Cham, 2021, p. 721.
    [4]
    X.H. Yan, Y. Zou, and Y. Zhang, Properties and processing technologies of high-entropy alloys, Mater. Futures, 1(2022), No. 2, art. No. 022002. doi: 10.1088/2752-5724/ac5e0c
    [5]
    N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
    [6]
    G. Laplanche, P. Gadaud, C. Bärsch, et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy, J. Alloys Compd., 746(2018), p. 244. doi: 10.1016/j.jallcom.2018.02.251
    [7]
    C.L. Lin, J.L. Lee, S.M. Kuo, et al., Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10− xMn x high entropy alloys, Mater. Chem. Phys., 271(2012), art. No. 124907.
    [8]
    M.S. Jadhav, D. Sahane, A. Verma, and S. Singh, Thermal stability and thermal expansion behavior of FeCoCrNi2Al high entropy alloy, Adv. Powder Technol., 32(2021), No. 2, p. 378. doi: 10.1016/j.apt.2020.12.019
    [9]
    M. Behera, A. Panigrahi, M. Bönisch, et al., Structural stability and thermal expansion of TiTaNbMoZr refractory high entropy alloy, J. Alloys Compd., 892(2022), p. 162154. doi: 10.1016/j.jallcom.2021.162154
    [10]
    S.C. Zhou, C.D. Dai, H.X. Hou, Y.P. Lu, P.K. Liaw, and Y. Zhang, A remarkable toughening high-entropy-alloy wire with a bionic bamboo fiber heterogeneous structure, Scripta Mater., 226(2023), art. No. 115234. doi: 10.1016/j.scriptamat.2022.115234
    [11]
    Y.Y. Zhao, Superplasticity of Cu–Sn and Ni–Mn–Ga Shape Memory Microwires by Glass-Coated Melt Spinning Technique [Dissertation], University of Science and Technology Beijing, Beijing, 2015, p. 75.
    [12]
    X.H. Chen, X.C Zhang, Y. Zhang, and G.L. Chen, Processing and structures of porous bulk metallic glass with unidirectional opening pores, Rare Met. Mater. Eng., 37(2008), Suppl. 4, p. 695.
    [13]
    Y.Y. Yue, X.H. Yan, and Y. Zhang, Nano-fiber-structured Cantor alloy films prepared by sputtering, J. Mater. Res. Technol., 21(2022), p. 1120. doi: 10.1016/j.jmrt.2022.09.107
    [14]
    Y.Q. Wu, Y.S. Cai, J.P. Hao, et al., Co47.5Fe28.5Ni19Si3.3Al1.7 high-entropy skeletons fabricated by selective laser melting and properties tuned by pressure infiltration of Al, Res. Appl. Mater. Sci., 4(2022), No. 2, p. 24. doi: 10.33142/rams.v4i2.8467
    [15]
    X.F. Song, P.K. Liaw, Z.Y. Wei, et al, Evolution of the microstructures, magnetic and mechanical behaviors of Co47.5Fe28.5Ni19Si3.4Al1.6 high-entropy alloy fabricated by laser powder bed fusion, Addit. Manuf., 71(2023), art. No. 103593.
    [16]
    P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
    [17]
    D.Y. Li and Y. Zhang, The ultrahigh charpy impact toughness of forged Al xCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70(2016), p. 24. doi: 10.1016/j.intermet.2015.11.002
    [18]
    D.Y. Li, Z.M. Li, L. Xie, Y. Zhang, and W.R. Wang, Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy, Nano Res., 15(2022), No. 6, p. 4859. doi: 10.1007/s12274-021-3719-y
    [19]
    Y.Z. Wang, Z.M. Jiao, G.B. Bian, et al., Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure, Mater. Sci. Eng. A, 839(2022), art. No. 142837. doi: 10.1016/j.msea.2022.142837
    [20]
    Y.Q. Tang and D.Y. Li, Dynamic response of high-entropy alloys to ballistic impact, Sci. Adv., 8(2022), No. 32, art. No. eabp9096. doi: 10.1126/sciadv.abp9096
    [21]
    W.R. Zhang, Y.S. Li, P. Liaw, and Y. Zhang, A strategic design route to find a depleted uranium high-entropy alloy with great strength, Metals, 12(2022), No. 4, art. No. 699. doi: 10.3390/met12040699
    [22]
    J. Shi, Y.Z. Zhang, X. Wang, et al., Microstructure and mechanical properties of UNbTiHf1– xMo x high-entropy alloys, Mater. Sci. Eng. A, 860(2022), art. No. 144239. doi: 10.1016/j.msea.2022.144239
    [23]
    Y.S. Li, P.K. Liaw, and Y. Zhang, Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys, Metals, 12(2022), p. 496. doi: 10.3390/met12030496
    [24]
    X.H. Yan, P.K. Liaw, and Y. Zhang, Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates, J. Mater. Sci. Technol., 110 (2022), p. 109 doi: 10.1016/j.jmst.2021.08.034
    [25]
    J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1231. doi: 10.1007/s12613-020-2214-x
    [26]
    M.A. Khan, M. Hamza, J. Brechtl, et al., Development and characterization of a low-density TiNbZrAlTa refractory high entropy alloy with enhanced compressive strength and plasticity, Mater. Charact., 205(2023), art. No. 113301. doi: 10.1016/j.matchar.2023.113301
    [27]
    M. Abubaker Khan, T.L. Wang, C.S. Feng, et al., A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1W x refractory high entropy alloy via nano-precipitates and dislocations induced-deformation, Mater. Des., 222(2022), art. No. 111034. doi: 10.1016/j.matdes.2022.111034
    [28]
    X.F. Liu, Z.L. Tian, X.F. Zhang, et al., “Self-sharpening” tungsten high-entropy alloy, Acta Mater., 186(2020), p. 257. doi: 10.1016/j.actamat.2020.01.005
    [29]
    K. Jin, C. Lu, L.M. Wang, et al., Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys, Scripta Mater., 119(2016), p. 65. doi: 10.1016/j.scriptamat.2016.03.030
    [30]
    D.J.M. King, S.T.Y. Cheung, S.A. Humphry-Baker, et al., High temperature, low neutron cross-section high-entropy alloys in the Nb–Ti–V–Zr system, Acta Mater., 166(2019), p. 435. doi: 10.1016/j.actamat.2019.01.006
    [31]
    R.X. Li, Z. Ren, Y. Wu, et al., Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637. doi: 10.1016/j.msea.2020.140637
    [32]
    Y.R. Shi, W.T. Ye, D.P. Hua, et al., Interfacial engineering for enhanced mechanical performance: High-entropy alloy/graphene nanocomposites, Mater. Today. Phys., 38(2023), art. No. 101220. doi: 10.1016/j.mtphys.2023.101220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Share Article

    Article Metrics

    Article Views(2125) PDF Downloads(118) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return