Jishuo Han, Yong Li, Chenhong Ma, Qingyao Zheng, Xiuhua Zhang,  and Xiaofang Wu, Study on the oxidation mechanism of Al–SiC composite at elevated temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2077-2087. https://doi.org/10.1007/s12613-023-2778-3
Cite this article as:
Jishuo Han, Yong Li, Chenhong Ma, Qingyao Zheng, Xiuhua Zhang,  and Xiaofang Wu, Study on the oxidation mechanism of Al–SiC composite at elevated temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2077-2087. https://doi.org/10.1007/s12613-023-2778-3
Research Article

Study on the oxidation mechanism of Al–SiC composite at elevated temperature

+ Author Affiliations
  • Corresponding author:

    Yong Li    E-mail: lirefractory@vip.sina.com

  • Received: 22 August 2023Revised: 13 October 2023Accepted: 6 November 2023Available online: 10 November 2023
  • Resin-bonded Al–SiC composite was sintered at 1100, 1300, and 1500°C in the air, the oxidation mechanism was investigated. The reaction models were also established. The oxidation resistance of the Al–SiC composite was significantly enhanced with temperature increase. SiC in the exterior of the composite was partially oxidized slightly, while the transformation of metastable Al4C3 to stable Al4SiC4 existed in the interior. At 1100°C, Al in the interior reacted with residual C to form Al4C3. With increasing to 1300°C, high temperature and low oxygen partial pressure lead to active oxidation of SiC, and internal gas composition transforms to Al2O(g) + CO(g) + SiO(g) as the reaction proceeds. After Al4C3 is formed, CO(g) and SiO(g) are continuously deposited on its surface, transforming to Al4SiC4. At 1500°C, a dense layer consisting of SiC and Al4SiC4 whiskers is formed which cuts off the diffusion channel of oxygen. The active oxidation of SiC is accelerated, enabling more gas to participate in the synthesis of Al4SiC4, eventually forming hexagonal lamellar Al4SiC4 with mutual accumulation between SiC particles. Introducing Al enhances the oxidation resistance of SiC. In addition, the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.
  • loading
  • [1]
    F. Qian, L.G. Wang, W.K Ma, et al., Application progress and prospects for kiln furniture, China Ceram., 58(2022), No. 5, p. 1.
    [2]
    J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide-A review, Rev. Adv. Mater. Sci., 38(2014), No. 1, p. 29.
    [3]
    Y.J. Ma, X.Y. Meng, S.B. Yang, et al., Significant improvement of resistance to dry/water oxygen corrosion at medium and high temperatures of SiC/SiC composites upon matrix modification by Ca–Y–Al–Si–O microcrystalline glass, J. Eur. Ceram. Soc., 43(2023), No. 11, p. 4645. doi: 10.1016/j.jeurceramsoc.2023.04.016
    [4]
    H.F. Wang, H.J. Zhang, Y.B. Bi, et al., Effects of different catalysts on performance of self-bonded SiC refractories, Ceram. Int., 47(2021), No. 19, p. 27863. doi: 10.1016/j.ceramint.2021.06.215
    [5]
    N.K. Reddy, Reaction-bonded silicon carbide refractories, Mater. Chem. Phys., 76(2002), No. 1, p. 78. doi: 10.1016/S0254-0584(01)00502-8
    [6]
    H.F. Wang, Y.B. Bi, L. Han, et al., Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables, Ceram. Int., 43(2017), No. 13, p. 10361. doi: 10.1016/j.ceramint.2017.05.070
    [7]
    A. Kovalčíková, J. Dusza, and P. Šajgalík, Influence of the heat treatment on mechanical properties and oxidation resistance of SiC–Si3N4 composites, Ceram. Int., 39(2013), No. 7, p. 7951. doi: 10.1016/j.ceramint.2013.03.059
    [8]
    S.W. Yu, T. Zeng, X.T. Pan, et al., Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing, Ceram. Int., 47(2021), No. 20, p. 28218. doi: 10.1016/j.ceramint.2021.06.235
    [9]
    Y.H. Wang, W. Liu, J.X. Guo, et al. , In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering, Ceram. Int., 47(2021), No. 15, p. 22049. doi: 10.1016/j.ceramint.2021.04.225
    [10]
    P. Tatarko, M. Kašiarová, J. Dusza, and P. Šajgalík, Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites, J. Eur. Ceram. Soc., 33(2013), No. 12, p. 2259. doi: 10.1016/j.jeurceramsoc.2013.01.008
    [11]
    M. Zhang, Q.Q. Chen, Y.P. He, et al., A comparative study on high temperature oxidation behavior of SiC, SiC–BN and SiBCN monoliths, Corros. Sci., 192(2021), art. No. 109855. doi: 10.1016/j.corsci.2021.109855
    [12]
    L. Charpentier, M. Balat-Pichelin, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen: Part 1: Sintered α-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2653. doi: 10.1016/j.jeurceramsoc.2010.04.025
    [13]
    L. Charpentier, M. Balat-Pichelin, H. Glénat, E. Bêche, E. Laborde, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen. Part 2: CVD β-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2661. doi: 10.1016/j.jeurceramsoc.2010.04.031
    [14]
    X.C. Li, B.Q. Zhu, and T.X. Wang, Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO–C refractories, Ceram. Int., 38(2012), No. 4, p. 2883. doi: 10.1016/j.ceramint.2011.11.061
    [15]
    M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, and H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix, Ceram. Int., 35(2009), No. 2, p. 861. doi: 10.1016/j.ceramint.2008.03.001
    [16]
    S. Behera and R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO–C refractory: An in-depth investigation, Ceram. Int., 42(2016), No. 16, p. 18484. doi: 10.1016/j.ceramint.2016.08.185
    [17]
    Y. Sun, Y. Li, H.Y. Li, M.W. Yan, S.H. Tong, and J.L. Sun, Formation mechanism of dense anti-oxidation layer in Al–Si–MgO composites sintered in air condition, Ceram. Int., 44(2018), No. 4, p. 3987. doi: 10.1016/j.ceramint.2017.11.193
    [18]
    C.H. Ma, Y. Li, W.D. Xue, P. Jiang, and Y.N. Shen, Investigation of the oxidation mechanism of an Al–Si–Al2O3 composite at 1100°C and 1550°C, Ceram. Int., 46(2020), No. 9, p. 13813. doi: 10.1016/j.ceramint.2020.02.172
    [19]
    C. Chatillon and F. Teyssandier, Thermodynamic assessment of the different steps observed during SiC oxidation, J. Eur. Ceram. Soc., 42(2022), No. 4, p. 1175. doi: 10.1016/j.jeurceramsoc.2021.11.064
    [20]
    B. Harder, N. Jacobson, and D. Myers, Oxidation transitions for SiC part II. Passive-to-active transitions, J. Am. Ceram. Soc., 96(2013), No. 2, p. 606. doi: 10.1111/jace.12104
    [21]
    Y.J. Joo, S.H. Joo, H.J. Lee, Y.J. Shim, D.G. Shin, and K.Y. Cho, Effect of impurities control on the crystallization and densification of polymer-derived SiC fibers, Nanomaterials, 11(2021), No. 11, art. No. 2933. doi: 10.3390/nano11112933
    [22]
    C.H. Ma, Y. Li, L.X. Zhang, W.D. Xue, and J.L. Sun, Formation of (Al2OC)1– x(AlN) x solid solution starting from Al–Si–Al2O3 powder matrix at 1300°C in flowing nitrogen, J. Am. Ceram. Soc., 102(2019), No. 10, p. 6349. doi: 10.1111/jace.16486
    [23]
    J.S. Han, Y. Li, C.H. Ma, Q.Y. Zheng, and X.H. Zhang, Formation mechanism of AlN–SiC solid solution with multiple morphologies in Al–Si–SiC composites under flowing nitrogen at 1300°C, J. Eur. Ceram. Soc., 42(2022), No. 14, p. 6356. doi: 10.1016/j.jeurceramsoc.2022.07.011
    [24]
    X. Chen, Y. Li, Y. Li, et al., Properties and microstructures of blast furnace carbon refractories with Al additions, Ironmaking Steelmaking, 37(2010), No. 6, p. 398. doi: 10.1179/030192310X12646889255825
    [25]
    M.W. Yan, J.Y. Zhang, Y.M. Yang, K.Q. Liu, and G.C. Sun, The phase composition and microstructural evolution of a novel MgO–C–Al–Si refractory used in bottom-blowing elements at high temperatures in flowing nitrogen, J. Asian. Ceram. Soc., 9(2021), No. 3, p. 794. doi: 10.1080/21870764.2021.1917113
    [26]
    X.X. Huang and G.W. Wen, Mechanical properties of Al4SiC4 bulk ceramics produced by solid state reaction, Ceram. Int., 33(2007), No. 3, p. 453. doi: 10.1016/j.ceramint.2005.10.009
    [27]
    D.A. Gunn, A theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 35. doi: 10.1016/0955-2219(93)90056-W
    [28]
    J.T. Huang, Z.H. Huang, Y.G. Liu, et al., Preparation and blast furnace slag corrosion behavior of SiC–Sialon–ZrN free-fired refractories, Ceram. Int., 40(2014), No. 7, p. 9763. doi: 10.1016/j.ceramint.2014.02.063
    [29]
    C.H. Ma, Y. Li, X.F. Wu, and Y. Gao, Synthesis mechanism of AlN–SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al–Si3N4–Al2O3 compact at 1500°C, Ceram. Int., 49(2023), No. 13, p. 22022. doi: 10.1016/j.ceramint.2023.04.027
    [30]
    C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al–Si–Al2O3 sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384. doi: 10.1016/j.ceramint.2018.01.031
    [31]
    P. Bronsveld, T. Hata, T. Vystavel, et al., Comparison between carbonization of wood charcoal with Al-triisopropoxide and alumina, J. Eur. Ceram. Soc., 26(2006), No. 4-5, p. 719. doi: 10.1016/j.jeurceramsoc.2005.07.023
    [32]
    X. Yue, Y. Li, H.X. Li, C.H. Ma, and X.H. Zhang, Investigation on a postmortem Al–Al2O3–fused mullite-containing Ti2O3 sliding gate, Ceram. Int., 49(2023), No. 15, p. 26069. doi: 10.1016/j.ceramint.2023.05.161
    [33]
    J.H. Chen, Z.H. Zhang, W.J. Mi, et al., Fabrication and oxidation behavior of Al4SiC4 powders, J. Am. Ceram. Soc., 100(2017), No. 7, p. 3145. doi: 10.1111/jace.14841
    [34]
    X.M. Xing, B. Li, J.H. Chen, and X.M. Hou, Formation mechanism of large size plate-like Al4SiC4 grains by a carbothermal reduction method, CrystEngComm, 20(2018), No. 10, p. 1399. doi: 10.1039/C7CE02193C
    [35]
    M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of physics for the National Institute of standards and Technology, New York, 1998.
    [36]
    I.A. Aksay and J.A. Pask, The silica-alumina system: Stable and metastable equilibria at 1.0 atmosphere, Science, 183(1974), No. 4120, p. 69. doi: 10.1126/science.183.4120.69
    [37]
    I.A. Aksaf and J.A. Pask, Stable and metastable equilibria in the system SiO2–Al2O3, J. Am. Ceram. Soc., 58(1975), p. 507. doi: 10.1111/j.1151-2916.1975.tb18770.x
    [38]
    N. Jacobson, B. Harder, and D. Myers, Oxidation transitions for SiC part I. Active-to-passive transitions, J. Am. Ceram. Soc., 96(2013), No. 3, p. 838. doi: 10.1111/jace.12108
    [39]
    G.Y. Mi, C. Liu, C.M. Wang, L.D. Xiong, and Q.B. Ouyang, The effect of Zr addition on the laser welding of SiCp/2A14Al composite, J. Mater. Res. Technol., 15(2021), p. 5175. doi: 10.1016/j.jmrt.2021.10.097
    [40]
    S.K. Nandy, N.K. Ghosh, D. Ghosh, and G.C. Das, Hydration of coked MgO–C–Al refractories, Ceram. Int., 32(2006), No. 2, p. 163. doi: 10.1016/j.ceramint.2005.01.013
    [41]
    A. Yamaguchi and S.W. Zhang, Synthesis and some properties of Al4SiC4, J. Ceram. Soc. Jpn., 103(1995), No. 1193, p. 20. doi: 10.2109/jcersj.103.20
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(892) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return