Cite this article as: | Jishuo Han, Yong Li, Chenhong Ma, Qingyao Zheng, Xiuhua Zhang, and Xiaofang Wu, Study on the oxidation mechanism of Al–SiC composite at elevated temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2077-2087. https://dx.doi.org/10.1007/s12613-023-2778-3 |
This work was supported by the National Key Research and Development Program of China (No. 2021YFB3701400).
The authors declare that they have no conflict of interest.
[1] |
F. Qian, L.G. Wang, W.K Ma, et al., Application progress and prospects for kiln furniture, China Ceram., 58(2022), No. 5, p. 1.
|
[2] |
J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide-A review, Rev. Adv. Mater. Sci., 38(2014), No. 1, p. 29.
|
[3] |
Y.J. Ma, X.Y. Meng, S.B. Yang, et al., Significant improvement of resistance to dry/water oxygen corrosion at medium and high temperatures of SiC/SiC composites upon matrix modification by Ca–Y–Al–Si–O microcrystalline glass, J. Eur. Ceram. Soc., 43(2023), No. 11, p. 4645. DOI: 10.1016/j.jeurceramsoc.2023.04.016
|
[4] |
H.F. Wang, H.J. Zhang, Y.B. Bi, et al., Effects of different catalysts on performance of self-bonded SiC refractories, Ceram. Int., 47(2021), No. 19, p. 27863. DOI: 10.1016/j.ceramint.2021.06.215
|
[5] |
N.K. Reddy, Reaction-bonded silicon carbide refractories, Mater. Chem. Phys., 76(2002), No. 1, p. 78. DOI: 10.1016/S0254-0584(01)00502-8
|
[6] |
H.F. Wang, Y.B. Bi, L. Han, et al., Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables, Ceram. Int., 43(2017), No. 13, p. 10361. DOI: 10.1016/j.ceramint.2017.05.070
|
[7] |
A. Kovalčíková, J. Dusza, and P. Šajgalík, Influence of the heat treatment on mechanical properties and oxidation resistance of SiC–Si3N4 composites, Ceram. Int., 39(2013), No. 7, p. 7951. DOI: 10.1016/j.ceramint.2013.03.059
|
[8] |
S.W. Yu, T. Zeng, X.T. Pan, et al., Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing, Ceram. Int., 47(2021), No. 20, p. 28218. DOI: 10.1016/j.ceramint.2021.06.235
|
[9] |
Y.H. Wang, W. Liu, J.X. Guo, et al. , In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering, Ceram. Int., 47(2021), No. 15, p. 22049. DOI: 10.1016/j.ceramint.2021.04.225
|
[10] |
P. Tatarko, M. Kašiarová, J. Dusza, and P. Šajgalík, Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites, J. Eur. Ceram. Soc., 33(2013), No. 12, p. 2259. DOI: 10.1016/j.jeurceramsoc.2013.01.008
|
[11] |
M. Zhang, Q.Q. Chen, Y.P. He, et al., A comparative study on high temperature oxidation behavior of SiC, SiC–BN and SiBCN monoliths, Corros. Sci., 192(2021), art. No. 109855. DOI: 10.1016/j.corsci.2021.109855
|
[12] |
L. Charpentier, M. Balat-Pichelin, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen: Part 1: Sintered α-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2653. DOI: 10.1016/j.jeurceramsoc.2010.04.025
|
[13] |
L. Charpentier, M. Balat-Pichelin, H. Glénat, E. Bêche, E. Laborde, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen. Part 2: CVD β-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2661. DOI: 10.1016/j.jeurceramsoc.2010.04.031
|
[14] |
X.C. Li, B.Q. Zhu, and T.X. Wang, Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO–C refractories, Ceram. Int., 38(2012), No. 4, p. 2883. DOI: 10.1016/j.ceramint.2011.11.061
|
[15] |
M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, and H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix, Ceram. Int., 35(2009), No. 2, p. 861. DOI: 10.1016/j.ceramint.2008.03.001
|
[16] |
S. Behera and R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO–C refractory: An in-depth investigation, Ceram. Int., 42(2016), No. 16, p. 18484. DOI: 10.1016/j.ceramint.2016.08.185
|
[17] |
Y. Sun, Y. Li, H.Y. Li, M.W. Yan, S.H. Tong, and J.L. Sun, Formation mechanism of dense anti-oxidation layer in Al–Si–MgO composites sintered in air condition, Ceram. Int., 44(2018), No. 4, p. 3987. DOI: 10.1016/j.ceramint.2017.11.193
|
[18] |
C.H. Ma, Y. Li, W.D. Xue, P. Jiang, and Y.N. Shen, Investigation of the oxidation mechanism of an Al–Si–Al2O3 composite at 1100°C and 1550°C, Ceram. Int., 46(2020), No. 9, p. 13813. DOI: 10.1016/j.ceramint.2020.02.172
|
[19] |
C. Chatillon and F. Teyssandier, Thermodynamic assessment of the different steps observed during SiC oxidation, J. Eur. Ceram. Soc., 42(2022), No. 4, p. 1175. DOI: 10.1016/j.jeurceramsoc.2021.11.064
|
[20] |
B. Harder, N. Jacobson, and D. Myers, Oxidation transitions for SiC part II. Passive-to-active transitions, J. Am. Ceram. Soc., 96(2013), No. 2, p. 606. DOI: 10.1111/jace.12104
|
[21] |
Y.J. Joo, S.H. Joo, H.J. Lee, Y.J. Shim, D.G. Shin, and K.Y. Cho, Effect of impurities control on the crystallization and densification of polymer-derived SiC fibers, Nanomaterials, 11(2021), No. 11, art. No. 2933. DOI: 10.3390/nano11112933
|
[22] |
C.H. Ma, Y. Li, L.X. Zhang, W.D. Xue, and J.L. Sun, Formation of (Al2OC)1– x(AlN) x solid solution starting from Al–Si–Al2O3 powder matrix at 1300°C in flowing nitrogen, J. Am. Ceram. Soc., 102(2019), No. 10, p. 6349. DOI: 10.1111/jace.16486
|
[23] |
J.S. Han, Y. Li, C.H. Ma, Q.Y. Zheng, and X.H. Zhang, Formation mechanism of AlN–SiC solid solution with multiple morphologies in Al–Si–SiC composites under flowing nitrogen at 1300°C, J. Eur. Ceram. Soc., 42(2022), No. 14, p. 6356. DOI: 10.1016/j.jeurceramsoc.2022.07.011
|
[24] |
X. Chen, Y. Li, Y. Li, et al., Properties and microstructures of blast furnace carbon refractories with Al additions, Ironmaking Steelmaking, 37(2010), No. 6, p. 398. DOI: 10.1179/030192310X12646889255825
|
[25] |
M.W. Yan, J.Y. Zhang, Y.M. Yang, K.Q. Liu, and G.C. Sun, The phase composition and microstructural evolution of a novel MgO–C–Al–Si refractory used in bottom-blowing elements at high temperatures in flowing nitrogen, J. Asian. Ceram. Soc., 9(2021), No. 3, p. 794. DOI: 10.1080/21870764.2021.1917113
|
[26] |
X.X. Huang and G.W. Wen, Mechanical properties of Al4SiC4 bulk ceramics produced by solid state reaction, Ceram. Int., 33(2007), No. 3, p. 453. DOI: 10.1016/j.ceramint.2005.10.009
|
[27] |
D.A. Gunn, A theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 35. DOI: 10.1016/0955-2219(93)90056-W
|
[28] |
J.T. Huang, Z.H. Huang, Y.G. Liu, et al., Preparation and blast furnace slag corrosion behavior of SiC–Sialon–ZrN free-fired refractories, Ceram. Int., 40(2014), No. 7, p. 9763. DOI: 10.1016/j.ceramint.2014.02.063
|
[29] |
C.H. Ma, Y. Li, X.F. Wu, and Y. Gao, Synthesis mechanism of AlN–SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al–Si3N4–Al2O3 compact at 1500°C, Ceram. Int., 49(2023), No. 13, p. 22022. DOI: 10.1016/j.ceramint.2023.04.027
|
[30] |
C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al–Si–Al2O3 sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384. DOI: 10.1016/j.ceramint.2018.01.031
|
[31] |
P. Bronsveld, T. Hata, T. Vystavel, et al., Comparison between carbonization of wood charcoal with Al-triisopropoxide and alumina, J. Eur. Ceram. Soc., 26(2006), No. 4-5, p. 719. DOI: 10.1016/j.jeurceramsoc.2005.07.023
|
[32] |
X. Yue, Y. Li, H.X. Li, C.H. Ma, and X.H. Zhang, Investigation on a postmortem Al–Al2O3–fused mullite-containing Ti2O3 sliding gate, Ceram. Int., 49(2023), No. 15, p. 26069. DOI: 10.1016/j.ceramint.2023.05.161
|
[33] |
J.H. Chen, Z.H. Zhang, W.J. Mi, et al., Fabrication and oxidation behavior of Al4SiC4 powders, J. Am. Ceram. Soc., 100(2017), No. 7, p. 3145. DOI: 10.1111/jace.14841
|
[34] |
X.M. Xing, B. Li, J.H. Chen, and X.M. Hou, Formation mechanism of large size plate-like Al4SiC4 grains by a carbothermal reduction method, CrystEngComm, 20(2018), No. 10, p. 1399. DOI: 10.1039/C7CE02193C
|
[35] |
M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of physics for the National Institute of standards and Technology, New York, 1998.
|
[36] |
I.A. Aksay and J.A. Pask, The silica-alumina system: Stable and metastable equilibria at 1.0 atmosphere, Science, 183(1974), No. 4120, p. 69. DOI: 10.1126/science.183.4120.69
|
[37] |
I.A. Aksaf and J.A. Pask, Stable and metastable equilibria in the system SiO2–Al2O3, J. Am. Ceram. Soc., 58(1975), p. 507. DOI: 10.1111/j.1151-2916.1975.tb18770.x
|
[38] |
N. Jacobson, B. Harder, and D. Myers, Oxidation transitions for SiC part I. Active-to-passive transitions, J. Am. Ceram. Soc., 96(2013), No. 3, p. 838. DOI: 10.1111/jace.12108
|
[39] |
G.Y. Mi, C. Liu, C.M. Wang, L.D. Xiong, and Q.B. Ouyang, The effect of Zr addition on the laser welding of SiCp/2A14Al composite, J. Mater. Res. Technol., 15(2021), p. 5175. DOI: 10.1016/j.jmrt.2021.10.097
|
[40] |
S.K. Nandy, N.K. Ghosh, D. Ghosh, and G.C. Das, Hydration of coked MgO–C–Al refractories, Ceram. Int., 32(2006), No. 2, p. 163. DOI: 10.1016/j.ceramint.2005.01.013
|
[41] |
A. Yamaguchi and S.W. Zhang, Synthesis and some properties of Al4SiC4, J. Ceram. Soc. Jpn., 103(1995), No. 1193, p. 20. DOI: 10.2109/jcersj.103.20
|
[1] | Junyi Xiang, Xi Lu, Luwei Bai, Hongru Rao, Sheng Liu, Qingyun Huang, Shengqin Zhang, Guishang Pei, Xuewei Lü. Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(8): 1839-1848. DOI: 10.1007/s12613-024-2851-6 |
[2] | Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, Yanling Zhang. Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(1): 138-145. DOI: 10.1007/s12613-023-2687-5 |
[3] | Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, Filipe Fernandes. Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(12): 2459-2468. DOI: 10.1007/s12613-023-2655-0 |
[4] | Pejman Zamani, Zia Valefi. Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1779-1791. DOI: 10.1007/s12613-023-2630-9 |
[5] | Dajun Zhai, Tao Qiu, Jun Shen, Keqin Feng. Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 1991-1999. DOI: 10.1007/s12613-022-2413-8 |
[6] | Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, Miao-yong Zhu. Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(4): 391-398. DOI: 10.1007/s12613-018-1583-x |
[7] | Moslem Tayyebi, Beitallah Eghbali. Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 357-364. DOI: 10.1007/s12613-018-1579-6 |
[8] | Zhi-yuan Zhu, Yuan-fei Cai, You-jun Gong, Guo-ping Shen, Yu-guo Tu, Guo-fu Zhang. Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000℃ [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(7): 776-783. DOI: 10.1007/s12613-017-1461-y |
[9] | Han-quan Zhang, Jin-tao Fu. Oxidation behavior of artificial magnetite pellets [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(6): 603-610. DOI: 10.1007/s12613-017-1442-1 |
[10] | Jun-you Liu, Feng Li, Jie Liu, Yi Zhang, Yu-lei Wang. Micro-analysis of high-temperature oxidation-resistance of a new kind of heat-resistant grid plate in grate-kiln [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 632-639. DOI: 10.1016/S1674-4799(10)60004-0 |