Peixiong Zhang, Enhui Wang, Jingjing Liu, Tao Yang, Hailong Wang, and Xinmei Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1651-1658. https://dx.doi.org/10.1007/s12613-023-2788-1
Cite this article as: Peixiong Zhang, Enhui Wang, Jingjing Liu, Tao Yang, Hailong Wang, and Xinmei Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1651-1658. https://dx.doi.org/10.1007/s12613-023-2788-1

Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring

  • Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures. In this study, a new porous high-entropy (La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4 (HE (6RE1/6)PO4) ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents (0–60vol%) on this ceramic properties was systematically investigated. The results show that the porous HE (6RE1/6)PO4 ceramics with 60vol% starch exhibit the lowest thermal conductivity of 0.061 W·m−1·K−1 at room temperature and good pore structure stability with a linear shrinkage of approximately 1.67%. Moreover, the effect of large regular spherical pores (>10 μm) on its thermal insulation performance was discussed, and an optimal thermal conductivity prediction model was screened. The superior properties of the prepared porous HE (6RE1/6)PO4 ceramics allow them to be promising insulation materials in the future.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return