Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li,  and Guorui Zhao, Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1935-1943. https://doi.org/10.1007/s12613-023-2791-6
Cite this article as:
Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li,  and Guorui Zhao, Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1935-1943. https://doi.org/10.1007/s12613-023-2791-6
Research Article

Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics

+ Author Affiliations
  • Corresponding authors:

    Hongyu Yang    E-mail: yanghongyu@xidian.edu.cn

    Zhimin Li    E-mail: zmli@mail.xidian.edu.cn

  • Received: 10 July 2023Revised: 16 October 2023Accepted: 17 November 2023Available online: 21 November 2023
  • A glass frit containing Li2O–MgO–ZnO–B2O3–SiO2 component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa2O6 ceramics in this study. The good low-firing effects are presented due to the high matching relevance between Li2O–MgO–ZnO–B2O3–SiO2 glass and MgTa2O6 ceramics. The pure tri-rutile MgTa2O6 structure remains unchanged, and high sintering compactness can also be achieved at 1150°C. We found that the Li2O–MgO–ZnO–B2O3–SiO2 glass not only greatly improves the low-temperature sintering characteristics of MgTa2O6 ceramics but also maintains a high (quality factor (Q) × resonance frequency (f)) value while still improving the temperature stability. Typically, great microwave dielectric characteristics when added with 2wt% Li2O–MgO–ZnO–B2O3–SiO2 glass can be achieved at 1150°C: dielectric constant, εr = 26.1; Q × f = 34267 GHz; temperature coefficient of resonance frequency, τf = −8.7 × 10−6 /°C.
  • loading
  • [1]
    F.F. Wu, D. Zhou, C. Du, et al., Temperature stable Sm(Nb1– xV x)O4 (0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications, J. Mater. Chem. C, 9(2021), No. 31, p. 9962. doi: 10.1039/D1TC02390J
    [2]
    H.C. Xiang, J. Kilpijärvi, S. Myllymäki, H.T. Yang, L. Fang, and H. Jantunen, Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5GHz Wi-Fi antennas, Appl. Mater. Today, 21(2020), art. No. 100826. doi: 10.1016/j.apmt.2020.100826
    [3]
    M.T. Sebastian and H. Jantunen, Low loss dielectric materials for LTCC applications: A review, Int. Mater. Rev., 53(2008), No. 2, p. 57. doi: 10.1179/174328008X277524
    [4]
    F.F. Wu, D. Zhou, C. Du, et al., Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1– xBi x)NbO4 (x = 0–0.15) microwave dielectric ceramics, ACS Appl. Mater. Interfaces, 14(2022), No. 5, p. 7030. doi: 10.1021/acsami.1c24307
    [5]
    H. Yang, S. Zhang, H. Yang, et al., The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams, J. Adv. Ceram., 10(2021), No. 5, p. 885. doi: 10.1007/s40145-021-0528-4
    [6]
    H.J. Lee, K.S. Hong, and I.T. Kim, Crystal structure and microwave dielectric properties of M(Nb xTa1− x)2O6 solid solution (M = Mg or Zn), J. Mater. Res., 12(1997), No. 6, p. 1437. doi: 10.1557/JMR.1997.0196
    [7]
    E.S. Kim and C.J. Jeon, Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics, J. Adv. Dielectr., 1(2011), No. 1, p. 127. doi: 10.1142/S2010135X11000161
    [8]
    H.T. Wu, Y.S. Jiang, and Y.L. Yue, Low-temperature synthesis and microwave dielectric properties of trirutile-structure MgTa2O6 ceramics by aqueous sol–gel process, Ceram. Int., 38(2012), No. 6, p. 5151. doi: 10.1016/j.ceramint.2012.03.020
    [9]
    B.J. Fu, Y.C. Zhang, X.L. Su, Y.H. Liu, and M. Hong, Effects of CuO addition on the microstructure and microwave dielectric properties of MgTa2O6 ceramics, Key Eng. Mater., 512-515(2012), p. 1222. doi: 10.4028/www.scientific.net/KEM.512-515.1222
    [10]
    H.Y. Yang, L. Chai, G.C. Liang, et al., Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics, J. Adv. Ceram., 12(2023), No. 2, p. 296. doi: 10.26599/JAC.2023.9220683
    [11]
    H.Y. Yang, L. Chai, Y.C. Wang, M.J. Xing, Y.W. Chen, and E.Z. Li, Matching correlation study of titanium-based ceramics with glass based on dissolution characteristics, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 5778. doi: 10.1016/j.jeurceramsoc.2022.06.014
    [12]
    M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, and N.M. Alford, A mechanism for low-temperature sintering, J. Eur. Ceram. Soc., 26(2006), No. 13, p. 2777. doi: 10.1016/j.jeurceramsoc.2005.06.026
    [13]
    B.H. Toby, EXPGUI, a graphical user interface for GSAS , J. Appl. Crystallogr., 34(2001), No. 2, p. 210.
    [14]
    A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS ), Los Alamos National Laboratory Report LAUR 86-748, U.S. Department of Energy: Washington, DC, 2004.
    [15]
    T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R.E. Newnham, Effect of glass additions on BaO–TiO2–WO3 microwave ceramics, ChemInform, 25(1994), No. 7, p. 1909.
    [16]
    H.Y. Yang, S.R. Zhang, H.C. Yang, X. Zhang, and E.Z. Li, Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4–(1– x)Zn0.15Nb0.3Ti0.55O2 ceramics, Inorg. Chem., 57(2018), No. 14, p. 8264. doi: 10.1021/acs.inorgchem.8b00873
    [17]
    E.A. Nenasheva, S.S. Redozubov, N.F. Kartenko, and I.M. Gaidamaka, Microwave dielectric properties and structure of ZnO–Nb2O5–TiO2 ceramics, J. Eur. Ceram. Soc., 31(2011), No. 6, p. 1097. doi: 10.1016/j.jeurceramsoc.2010.12.023
    [18]
    X.C. Fan, X.M. Chen, and X.Q. Liu, Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study, Chem. Mater., 20(2008), No. 12, p. 4092. doi: 10.1021/cm703273z
    [19]
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
    [20]
    Z.Q. Yuan, B. Liu, X.Q. Liu, and X.M. Chen, Structure and microwave dielectric characteristics of Sr(La1− xSm x)2Al2O7 ceramics, RSC Adv., 6(2016), No. 98, p. 96229. doi: 10.1039/C6RA20776F
    [21]
    E.S. Kim, C.J. Jeon, and P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics, J. Am. Ceram. Soc., 95(2012), No. 9, p. 2934. doi: 10.1111/j.1551-2916.2012.05274.x
    [22]
    N.E. Brese and M. O'Keeffe, Bond-valence parameters for solids, Acta Crystallogr., Sect. B, 47(1991), No. 2, p. 192. doi: 10.1107/S0108768190011041
    [23]
    H.R. Tian, J.J. Zheng, L.T. Liu, et al., Structure characteristics and microwave dielectric properties of Pr2(Zr1– xTi x)3(MoO4)9 solid solution ceramic with a stable temperature coefficient, J. Mater. Sci. Technol., 116(2022), p. 121. doi: 10.1016/j.jmst.2021.10.051
    [24]
    H.Y. Yang, E.Z. Li, H.C. Yang, H.C. He, and R.S. Zhang, Synthesis of Zn0.5Ti0.5NbO4 microwave dielectric ceramics with Li2O–B2O3–SiO2 glass for LTCC application, Int. J. Appl. Glass Sci., 9(2018), No. 3, p. 392. doi: 10.1111/ijag.12334
    [25]
    L.S. Xie, C.W. Zhong, Z.X. Fang, Y. Zhao, B. Tang, and S.R. Zhang, Microwave dielectric properties of Li2O–xMgO–ZnO–B2O3–SiO2 glass-ceramics (x = 30–50 wt.%), J. Ceram. Soc. Jpn, 126(2018), No. 3, p. 163. doi: 10.2109/jcersj2.17156
    [26]
    C.F. Tseng, Microwave dielectric properties of low loss microwave dielectric ceramics: A0.5Ti0.5NbO4 (A = Zn, Co), J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3641. doi: 10.1016/j.jeurceramsoc.2014.06.010
    [27]
    H.Y. Yang, E.Z. Li, Y.F. Yang, Y. Shi, H.C. He, and S.R. Zhang, Co2O3 substitution effects on the structure and microwave dielectric properties of low-firing (Zn0.9Mg0.1)TiO3 ceramics, Ceram. Int., 44(2018), No. 5, p. 5010. doi: 10.1016/j.ceramint.2017.12.097
    [28]
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73(1993), No. 1, p. 348. doi: 10.1063/1.353856
    [29]
    D. Zhou, X.Q. Fan, X.W. Jin, D.W. He, and G.H. Chen, Structures, phase transformations, and dielectric properties of BiTaO4 ceramics, Inorg. Chem., 55(2016), No. 22, p. 11979. doi: 10.1021/acs.inorgchem.6b02153
    [30]
    H.Y. Yang, S.R. Zhang, H.C. Yang, Y. Yuan, and E.Z. Li, Intrinsic dielectric properties of columbite ZnNb2O6 ceramics studied by P–V–L bond theory and Infrared spectroscopy, J. Am. Ceram. Soc., 102(2019), No. 9, p. 5365. doi: 10.1111/jace.16385
    [31]
    E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics, J. Eur. Ceram. Soc., 30(2010), No. 7, p. 1731. doi: 10.1016/j.jeurceramsoc.2009.12.018
    [32]
    J. Bao, Y.P. Zhang, H. Kimura, H.T. Wu, and Z.X. Yue, Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1– xTi x )3(MoO4)9 ceramics, J. Adv. Ceram., 12(2023), No. 1, p. 82. doi: 10.26599/JAC.2023.9220668
    [33]
    H. Tian, X. Zhou, T. Jiang, et al., Bond characteristics and microwave dielectric characteristics of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics, J. Alloys Compd., 906(2022), art. No. 164333. doi: 10.1016/j.jallcom.2022.164333
    [34]
    Z.X. Fang, B. Tang, F. Si, and S.R. Zhang, Low temperature sintering of high permittivity Ca–Li–Nd–Ti microwave dielectric ceramics with BaCu(B2O5) additives, J. Alloys Compd., 693(2017), p. 843. doi: 10.1016/j.jallcom.2016.09.292
    [35]
    A.J. Bosman and E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev., 129(1963), No. 4, p. 1593. doi: 10.1103/PhysRev.129.1593
    [36]
    M.Z. Dang, H.X. Lin, X.G. Yao, et al., Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics, Ceram. Int., 45(2019), No. 18, p. 24244. doi: 10.1016/j.ceramint.2019.08.135
    [37]
    C.L. Huang, K.H. Chiang, and C.Y. Huang, Microwave dielectric properties and microstructures of MgTa2O6 ceramics with CuO addition, Mater. Chem. Phys., 90(2005), No. 2-3, p. 373. doi: 10.1016/j.matchemphys.2004.10.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(324) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return