Rong Zhu, Yonggang Yang, Baozhong Zhang, Borui Zhang, Lei Li, Yanxin Wu, and Zhenli Mi, Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp.1865-1875. https://dx.doi.org/10.1007/s12613-023-2796-1
Cite this article as: Rong Zhu, Yonggang Yang, Baozhong Zhang, Borui Zhang, Lei Li, Yanxin Wu, and Zhenli Mi, Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp.1865-1875. https://dx.doi.org/10.1007/s12613-023-2796-1

Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si

  • This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel. Results indicated that the microstructure of the Cr–Si micro-alloyed press hardened steel consisted of lath martensite, M23C6 carbides, and retained austenite. The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel. In addition, after oxidation at 930°C for 5 min, the thickness of the oxide scales on the Cr–Si micro-alloyed press hardened steel is less than 5 μm, much thinner than 45.50 μm-thick oxide scales on 22MnB5. The oxide scales of the Cr–Si micro-alloyed steel are composed of Fe2O3, Fe3O4, mixed spinel oxide (FeCr2O4 and Fe2SiO4), and amorphous SiO2. Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase. Due to the increase of spinel FeCr2O4 and Fe2SiO4 phase in the inner oxide scale and the amorphous SiO2 close to the substrate, the oxidation resistance of the Cr–Si micro-alloyed press hardened steel is improved.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return