Zongan Luo, Xin Zhang, Zhaosong Liu, Hongyu Zhou, Mingkun Wang,  and Guangming Xie, Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1890-1899. https://doi.org/10.1007/s12613-023-2801-8
Cite this article as:
Zongan Luo, Xin Zhang, Zhaosong Liu, Hongyu Zhou, Mingkun Wang,  and Guangming Xie, Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1890-1899. https://doi.org/10.1007/s12613-023-2801-8
Research Article

Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding

+ Author Affiliations
  • Corresponding author:

    Xin Zhang    E-mail: zx2017neu@163.com

  • Received: 15 August 2023Revised: 5 November 2023Accepted: 28 November 2023Available online: 1 December 2023
  • This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding (HRB) based on friction stir welding. The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum, and the tensile specimens fractured at the matrix after exceeding 1 Pa. Non-equilibrium grain boundaries were formed at the hot-rolled interface, and a large amount of Mg2Si particles were linearly precipitated along the interfacial grain boundaries (IGBs). During subsequent heat treatment, Mg2Si particles dissolved back into the matrix, and Al2O3 film remaining at the interface eventually evolved into MgO. In addition, the local IGBs underwent staged elimination during HRB, which facilitated the interface healing due to the fusion of grains at the interface. This process was achieved by the dissociation, emission, and annihilation of dislocations on the IGBs.
  • loading
  • [1]
    T.S. Liu, F. Qiu, H.Y. Yang, et al., Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al6061 alloys, Mater. Sci. Eng. A, 871(2023), art. No. 144929. doi: 10.1016/j.msea.2023.144929
    [2]
    C. Peng, G.W. Cao, T.Z. Gu, C. Wang, Z.Y. Wang, and C. Sun, The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere, J. Mater. Res. Technol., 19(2022), p. 709. doi: 10.1016/j.jmrt.2022.05.066
    [3]
    F.B. Meng, H.J. Huang, X.G. Yuan, X.J. Lin, Z.W. Cui, and X.L. Hu, Segregation in squeeze casting 6061 aluminum alloy wheel spokes and its formation mechanism, China Foundry, 18(2021), No. 1, p. 45. doi: 10.1007/s41230-021-0079-x
    [4]
    Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
    [5]
    M. Jolly and L. Katgerman, Modelling of defects in aluminium cast products, Prog. Mater. Sci., 123(2022), art. No. 100824. doi: 10.1016/j.pmatsci.2021.100824
    [6]
    P.J. Hao, A.R. He, and W.Q. Sun, Formation mechanism and control methods of inhomogeneous deformation during hot rough rolling of aluminum alloy plate, Arch. Civ. Mech. Eng., 18(2018), No. 1, p. 245. doi: 10.1016/j.acme.2017.07.004
    [7]
    T.T. Zhang, W.X. Wang, J. Zhang, and Z.F. Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1237. doi: 10.1007/s12613-020-2240-8
    [8]
    X. Han, H.T. Zhang, B. Shao, L. Li, K. Qin, and J.Z. Cui, Interfacial characteristics and properties of a low-clad-ratio AA4045/AA3003 cladding billet fabricated by semi-continuous casting, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1097. doi: 10.1007/s12613-016-1327-8
    [9]
    B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, and Y.Y. Li, Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints, Mater. Des., 157(2018), p. 437. doi: 10.1016/j.matdes.2018.08.003
    [10]
    B.J. Xie, M.Y. Sun, B. Xu, et al., Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding, J. Mater. Process. Technol., 283(2020), art. No. 116733. doi: 10.1016/j.jmatprotec.2020.116733
    [11]
    G.M. Xie, Z.A. Luo, H.G. Wang, G.D. Wang, and L.J. Wang, Microstructure and mechanical properties of heavy gauge plate by vacuum cladding rolling, Adv. Mater. Res., 97-101(2010), p. 324.
    [12]
    R.P. Jiang, W.H. Zhao, L. Zhang, X.Q. Li, and S.K. Guan, Microstructure and corrosion resistance of commercial purity aluminum sheet manufactured by continuous casting direct rolling after ultrasonic melt pre-treatment, J. Mater. Res. Technol., 22(2023), p. 1522. doi: 10.1016/j.jmrt.2022.12.025
    [13]
    P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, D. Hamilton, and C. Dykes, Influence of process parameters on solidification length of twin-belt continuous casting, Appl. Therm. Eng., 134(2018), p. 275. doi: 10.1016/j.applthermaleng.2018.01.121
    [14]
    J.R. Zhao, F.Y. Hung, and B.J. Chen, Effects of heat treatment on a novel continuous casting direct rolling 6056 aluminum alloy: cold rolling characteristics and tensile fracture properties, J. Mater. Res. Technol., 11(2021), p. 535. doi: 10.1016/j.jmrt.2021.01.037
    [15]
    M. Akbarifar, M. Divandari, S.M. A. Boutorabi, S.H. Ha, Y.O. Yoon, and S.K. Kim, Short-time oxidation of Al–Mg in dynamic conditions, Oxid. Met., 94(2020), No. 5, p. 409.
    [16]
    W.S. Tang, X.Q. Yang, C.B. Tian, and Y.S. Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al−Mg−Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1755. doi: 10.1007/s12613-022-2506-4
    [17]
    G.Q. Chen, J.P. Liu, H.Z. Wang, Z.B. Dong, X. Shu, and B.G. Zhang, Underlying cause of the performance deteriorates of Al–Cu–Mg alloy via electron-beam welding and the mechanism of ultrasonic modification, Sci. Technol. Weld. Joining, 25(2020), No. 8, p. 653. doi: 10.1080/13621718.2020.1798095
    [18]
    D.Z. Xu, L.G. Meng, C.R. Zhang, X. Chen, and X.G. Zhang, Interface microstructure evolution and bonding mechanism during vacuum hot pressing bonding of 2A12 aluminum alloy, Mater. Charact., 189(2022), art. No. 111997. doi: 10.1016/j.matchar.2022.111997
    [19]
    X. Zhang, Z.A. Luo, G.M. Xie, H. Yu, Z.S. Liu, and J.S. Yang, Interface microstructure and bonding mechanisms of 7050 aluminum alloy thick plates produced by vacuum roll cladding, Mater. Sci. Eng. A, 850(2022), art. No. 143582. doi: 10.1016/j.msea.2022.143582
    [20]
    X. Xu, X.W. Ma, S.B. Yu, G.Q. Zhao, Y.X. Wang, and X.X. Chen, Bonding mechanism and mechanical properties of 2196 Al-Cu-Li alloy joined by hot compression deformation, Mater. Charact., 167(2020), art. No. 110486. doi: 10.1016/j.matchar.2020.110486
    [21]
    J.Q. Yu, G.Q. Zhao, X.X. Chen, and M.C. Liang, A comparative study on hot deformation and solid-state bonding behavior of aluminum alloys for the integration of solid-state joining and forming processes, Int. J. Adv. Manuf. Technol., 104(2019), No. 9, p. 3849.
    [22]
    X.M. Qian, Z.D. Wang, Y. Li, Y.F. Wang, and Y. Peng, Formation mechanism of β” -Mg5Si6 and its PFZ in an Al-Mg-Si-Mn alloy: Experiment and first-principles calculations, Mater. Charact., 197(2023), art. No. 112617. doi: 10.1016/j.matchar.2022.112617
    [23]
    R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen, The crystal structure of the β’ phase in Al–Mg–Si alloys, Acta Mater., 55(2007), No. 11, p. 3815. doi: 10.1016/j.actamat.2007.02.032
    [24]
    H. Shishido, Y. Aruga, Y. Murata, C.D. Marioara, and O. Engler, Evaluation of precipitates and clusters during artificial aging of two model Al–Mg–Si alloys with different Mg/Si ratios, J. Alloys Compd., 927(2022), art. No. 166978. doi: 10.1016/j.jallcom.2022.166978
    [25]
    S.J. Yao, Q.H. Tang, J. Yang, et al., Microstructural characterization and mechanical properties of 6061 aluminum alloy processed with short-time solid solution and aging treatment, J. Alloys Compd., 960(2023), art. No. 170704. doi: 10.1016/j.jallcom.2023.170704
    [26]
    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.
    [27]
    X. Zhang, Z.A. Luo, Z.S. Liu, et al., Interfacial oxide evolution and mechanical properties of 7050 aluminum alloy clad plates during solution and aging process, Mater. Sci. Eng. A, 860(2022), art. No. 144310. doi: 10.1016/j.msea.2022.144310
    [28]
    D. Labus Zlatanovic, S. Balos, J.P. Bergmann, et al., In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding, Int. J. Mach. Tools Manuf., 164(2021), art. No. 103716. doi: 10.1016/j.ijmachtools.2021.103716
    [29]
    E. Panda, L.P.H. Jeurgens, and E.J. Mittemeijer, Effect of in vacuo surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin oxide films on Al–Mg alloy substrates, Surf. Sci., 604(2010), No. 5-6, p. 588. doi: 10.1016/j.susc.2009.12.030
    [30]
    D. Ajmera and E. Panda, Thermodynamics of ultra-thin oxide overgrowths on Al–Mg alloys: Role of interface energy, Corros. Sci., 102(2016), p. 425. doi: 10.1016/j.corsci.2015.10.035
    [31]
    Y.C. Si, F. Zhang, X. Li, et al., Thermodynamic calculation and microstructure characterization of spinel formation in MgO–Al2O3–C refractories, Ceram. Int., 48(2022), No. 11, p. 15525. doi: 10.1016/j.ceramint.2022.02.086
    [32]
    D. Labus Zlatanovic, J. Pierre Bergmann, S. Balos, J. Hildebrand, M. Bojanic-Sejat, and S. Goel, Effect of surface oxide layers in solid-state welding of aluminium alloys–review, Sci. Technol. Weld. Joining, 28(2023), No. 5, p. 331. doi: 10.1080/13621718.2023.2165603
    [33]
    G.P. Dolan and J.S. Robinson, Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis, J. Mater. Process. Technol., 153-154(2004), p. 346. doi: 10.1016/j.jmatprotec.2004.04.065
    [34]
    A.A. Nazarov, A.E. Romanov, and R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metall. Mater., 41(1993), No. 4, p. 1033. doi: 10.1016/0956-7151(93)90152-I
    [35]
    T. Fujita, Z. Horita, and T.G. Langdon, Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes, Philos. Mag. A, 82(2002), No. 11, p. 2249. doi: 10.1080/01418610208235736
    [36]
    Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, and J.H. Chen, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al–Mg–Si alloys, J. Mater. Sci. Technol., 41(2020), p. 127. doi: 10.1016/j.jmst.2019.11.001
    [37]
    L.Y. Zhou, S.B. Feng, M.Y. Sun, B. Xu, and D.Z. Li, Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1671. doi: 10.1016/j.jmst.2019.04.005
    [38]
    Y. Zhang, J.F. Jiang, Y. Wang, G.F. Xiao, Y.Z. Liu, and M.J. Huang, Recrystallization process of hot-extruded 6A02 aluminum alloy in solid and semi-solid temperature ranges, J. Alloys Compd., 893(2022), art. No. 162311. doi: 10.1016/j.jallcom.2021.162311
    [39]
    J.C. Li, X.D. Wu, L.F. Cao, B. Liao, Y.C. Wang, and Q. Liu, Hot deformation and dynamic recrystallization in Al–Mg–Si alloy, Mater. Charact., 173(2021), art. No. 110976. doi: 10.1016/j.matchar.2021.110976
    [40]
    J.Y. Zhang, B. Wang, and H. Wang, Geometrically necessary dislocations distribution in face-centred cubic alloy with varied grain size, Mater. Charact., 162(2020), art. No. 110205. doi: 10.1016/j.matchar.2020.110205
    [41]
    C.Y. Zhu, T. Harrington, G.T. Gray, and K.S. Vecchio, Dislocation-type evolution in quasi-statically compressed polycrystalline nickel, Acta Mater., 155(2018), p. 104. doi: 10.1016/j.actamat.2018.05.022
    [42]
    J.H. Zheng, C. Pruncu, K. Zhang, K.L. Zheng, and J. Jiang, Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy, Mater. Sci. Eng. A, 814(2021), art. No. 141158. doi: 10.1016/j.msea.2021.141158
    [43]
    A. Kedharnath, R. Kapoor, and A. Sarkar, Evolution of dislocations and grain boundaries during multi-axial forging of tantalum, Int. J. Refract. Met. Hard Mater, 112(2023), art. No. 106120. doi: 10.1016/j.ijrmhm.2023.106120
    [44]
    Y.J. Gao, C.J. Lu, Z.R. Luo, K. Lin, and C.G. Huang, Phase field crystal simulation of dislocation emission and annihilation at grain boundary, Chin. J. Nonferrous Met., 24(2014), No. 8, p. 2073.
    [45]
    B. Prasanna Nagasai, A. Ramaswamy, and J. Mani, Tensile properties and microstructure of surface tension transfer (STT) arc welded AA 6061-T6 aluminum alloy joints, Mater. Today Proc., 2023. https://doi.org/10.1016/j.matpr.2023.04.576
    [46]
    A. Thakur, V. Sharma, N. Minhas, S. Manda, and V.S. Sharma, Microstructure and mechanical properties of dissimilar friction stir welded joints of laser powder bed fusion processed AlSi10Mg and conventional hot rolled 6061-T6 thin sheets, Opt. Laser Technol., 163(2023), art. No. 109382. doi: 10.1016/j.optlastec.2023.109382
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(354) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return