Ying Gao, Ce Zhang, Jiazhen Zhang, and Xin Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2809-0
Cite this article as:
Ying Gao, Ce Zhang, Jiazhen Zhang, and Xin Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2809-0
 

Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling

+ Author Affiliations
  • Corresponding author:

    Ce Zhang    E-mail: luxin@ustb.edu.cn

  • Received: 2 September 2023Revised: 12 December 2023Accepted: 13 December 2023Available online: 15 December 2023
  • Hot deformation of sintered billets by powder metallurgy (PM) is an effective preparation technique for titanium alloys, which is more significant for high-alloying alloys. In this study, Ti–6.5Al–2Zr–Mo–V (TA15) titanium alloy plates were prepared by cold pressing sintering combined with high-temperature hot rolling. The microstructure and mechanical properties under different process parameters were investigated. Optical microscope, electron backscatter diffraction, and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism. The results showed that the chemical compositions were uniformly diffused without segregation during sintering, and the closing of the matrix craters was accelerated by increasing the sintering temperature. The block was hot rolled at 1200°C with an 80% reduction under only two passes without annealing. The strength and elongation of the plate at 20–25°C after solution and aging were 1247 MPa and 14.0%, respectively, which were increased by 24.5% and 40.0%, respectively, compared with the as-sintered alloy at 1300°C. The microstructure was significantly refined by continuous dynamic recrystallization, which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries. After hot rolling combined with heat treatment, the strength and plasticity of PM-TA15 were significantly improved, which resulted from the dense, uniform, and fine recrystallization structure and the synergistic effect of multiple slip systems.
  • loading
  • [1]
    D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844. doi: 10.1016/j.actamat.2012.10.043
    [2]
    H.Z. Niu, H.R. Zhang, Q.Q. Sun, and D.L. Zhang, Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti–6Al–4V titanium alloy, Mater. Sci. Eng. A, 754(2019), p. 361. doi: 10.1016/j.msea.2019.03.089
    [3]
    N. Soro, H. Attar, X.H. Wu, and M.S. Dargusch, Investigation of the structure and mechanical properties of additively manufactured Ti–6Al–4V biomedical scaffolds designed with a Schwartz primitive unit-cell, Mater. Sci. Eng. A, 745(2019), p. 195. doi: 10.1016/j.msea.2018.12.104
    [4]
    P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
    [5]
    T.L. Zhang, Z.H. Huang, T. Yang, et al. , In situ design of advanced titanium alloy with concentration modulations by additive manufacturing, Science, 374(2021), No. 6566, p. 478. doi: 10.1126/science.abj3770
    [6]
    J.Y. Zhang, B.N. Qian, Y.J. Wu, et al., A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys, J. Mater. Sci. Technol., 74(2021), p. 21. doi: 10.1016/j.jmst.2020.10.004
    [7]
    Y. Chong, T. Tsuru, B.Q. Guo, R. Gholizadeh, K. Inoue, and N. Tsuji, Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen, Acta Mater., 240(2022), art. No. 118356. doi: 10.1016/j.actamat.2022.118356
    [8]
    V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson, Industrial application of titanium hydride powder, Met. Powder Rep., 72(2017), No. 1, p. 30. doi: 10.1016/j.mprp.2016.02.051
    [9]
    L.P. Zhu, Y. Pan, Y.J. Liu, et al., Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 697. doi: 10.1007/s12613-021-2371-6
    [10]
    S.M. El-Soudani, K.O. Yu, E.M. Crist, et al., Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications, Metall. Mater. Trans. A, 44(2013), No. 2, p. 899. doi: 10.1007/s11661-012-1437-5
    [11]
    Y.F. Luo, Y.H. Xie, W. Zeng, J.M. Liang, and D.L. Zhang, Microstructure and mechanical properties of Ti–6Al–4V rods fabricated by powder compact extrusion of TiH2/Al60V40 powder blend, Metall. Mater. Trans. A, 50(2019), No. 4, p. 1643. doi: 10.1007/s11661-019-05116-0
    [12]
    Z. Wang, Y.N. Tan, and N. Li, Powder metallurgy of titanium alloys: A brief review, J. Alloys Compd., 965(2023), art. No. 171030. doi: 10.1016/j.jallcom.2023.171030
    [13]
    D.D. Zhang, L.Y. Bao, Q. Li, J.P. Han, and Y.Y. Chen, Microstructure evolution and properties of powder metallurgy Ti43Al9V0.3Y alloy sheets at different rolling temperatures, Mater. Sci. Eng. A, 866(2023), art. No. 144685. doi: 10.1016/j.msea.2023.144685
    [14]
    J.K. Hong, C.H. Lee, J.H. Kim, J.T. Yeom, and N.K. Park, Ti strip properties fabricated by powder rolling method, Surf. Rev. Lett., 17(2010), No. 2, p. 229. doi: 10.1142/S0218625X1001393X
    [15]
    S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Effect of particle morphology and size on roll compaction of Ti-based powders, Powder Technol., 264(2014), p. 310. doi: 10.1016/j.powtec.2014.05.033
    [16]
    G.M.D. Cantin, P.L. Kean, N.A. Stone, et al., Innovative consolidation of titanium and titanium alloy powders by direct rolling, Powder Metall., 54(2011), No. 3, p. 188. doi: 10.1179/174329011X13045076771795
    [17]
    W.H. Peter, T. Muth, W. Chen, et al., Titanium sheet fabricated from powder for industrial applications, JOM, 64(2012), No. 5, p. 566. doi: 10.1007/s11837-012-0309-1
    [18]
    D. Mangabhai, K. Araci, M.K. Akhtar, N.A. Stone, and D. Cantin, Processing of titanium powder into consolidated parts & sheet, Key Eng. Mater., 551(2013), p. 57. doi: 10.4028/www.scientific.net/KEM.551.57
    [19]
    G.M.D. Cantin and M.A. Gibson, Titanium sheet fabrication from powder, [in] M. Qian and F.H.S. Froes, eds., Titanium Powder Metallurgy, Amsterdam: Elsevier, (2015), p. 383.
    [20]
    K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, Y.I. Yevych, and A.Y. Koval, The effect of compacting rolling on the properties of titanium powder mill products, Powder Metall. Met. Ceram., 55(2017), No. 11, p. 633.
    [21]
    K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, et al., Mechanical and fatigue properties of powder titanium strips, obtained by asymmetric rolling, Powder Metall. Met. Ceram., 56(2017), No. 1, p. 53.
    [22]
    J. O’Flynn and S.F. Corbin, Effects of powder material and process parameters on the roll compaction, sintering and cold rolling of titanium sponge, Powder Metall., 62(2019), No. 5, p. 307. doi: 10.1080/00325899.2019.1651505
    [23]
    R.J. Xu, B. Liu, Z.Q. Yan, F. Chen, W.M. Guo, and Y. Liu, Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application, J. Mater. Sci., 54(2019), No. 18, p. 12049. doi: 10.1007/s10853-019-03734-y
    [24]
    A. Govender, C. Bemont, and S. Chikosha, Sintering high green density direct powder rolled titanium strips, in argon atmosphere, Metals, 11(2021), No. 6, art. No. 936. doi: 10.3390/met11060936
    [25]
    Y. Zhou, F. Yang, C.G. Chen, et al., Mechanical property enhancement of high-plasticity powder metallurgy titanium with a high oxygen concentration, J. Alloys Compd., 885(2021), art. No. 161006. doi: 10.1016/j.jallcom.2021.161006
    [26]
    F.C. Qiu, T. Cheng, Y.C. Song, et al., Achieving superior performance in powder-metallurgy near-β titanium alloy by combining hot rolling and rapid heat treatment followed by aging, J. Mater. Sci. Technol., 171(2024), p. 24. doi: 10.1016/j.jmst.2023.06.034
    [27]
    Y. Chong, R.P. Zhang, M.S. Hooshmand, et al., Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al, Nat. Commun., 12(2021), No. 1, art. No. 6158. doi: 10.1038/s41467-021-26374-w
    [28]
    Z.Q. Li, K. Han, H.L. Hou, B.Y. Wang, and Z.H. Hu, Effect of hydrogen on diffusion bonding behavior and mechanism of Ti–6Al–4V alloy, Rare Met. Mater. Eng., 43(2014), No. 2, p. 306. doi: 10.1016/S1875-5372(14)60064-3
    [29]
    H.P. Wu, H.L. Peng, X.F. Li, and J. Chen, Effect of hydrogen addition on diffusion bonding behavior of Ti-55 alloy, Mater. Sci. Eng. A, 739(2019), p. 244. doi: 10.1016/j.msea.2018.10.032
    [30]
    W.C. Xu, D.B. Shan, Z.L. Wang, G.P. Yang, L. Yan, and D.C. Kang, Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy, Trans. No. ferrous Met. Soc. China, 17(2007), No. 6, p. 1205. doi: 10.1016/S1003-6326(07)60250-7
    [31]
    Q.J. Sun and X. Xie, Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing, Mater. Sci. Eng. A, 724(2018), p. 493. doi: 10.1016/j.msea.2018.03.109
    [32]
    Z.C. Sun, J. Zhang, H. Yang, and H.L. Wu, Effect of workpiece size on microstructure evolution of different regions for TA15 Ti-alloy isothermal near-β forging by local loading, J. Mater. Process. Technol., 222(2015), p. 234. doi: 10.1016/j.jmatprotec.2015.02.039
    [33]
    Y.G. Zhou, W.D. Zeng, and H.Q. Yu, An investigation of a new near-beta forging process for titanium alloys and its application in aviation components, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 204. doi: 10.1016/j.msea.2004.10.016
    [34]
    D.M. Huang, H.L. Wang, X. Chen, Y. Chen, and H. Guo, Influence of forging process on microstructure and mechanical properties of large section Ti–6.5Al–1Mo–1V–2Zr alloy bars, Trans. No. ferrous Met. Soc. China, 23(2013), No. 8, p. 2276. doi: 10.1016/S1003-6326(13)62729-6
    [35]
    Z.C. Sun and H. Yang, Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 184. doi: 10.1016/j.msea.2009.05.058
    [36]
    W.J. Zhou, Z.C. Sun, S.P. Zuo, H. Yang, and X.G. Fan, Shape optimization of initial billet for TA15 Ti-alloy complex components preforming, Rare Met. Mater. Eng., 40(2011), No. 6, p. 951. doi: 10.1016/S1875-5372(11)60039-8
    [37]
    S.Z. Zhang, J.W. Liu, Q.Y. Zhao, C.J. Zhang, L. Bolzoni, and F. Yang, Microstructure characterization of a high strength Ti–6Al–4V alloy prepared from a powder mixture of TiH2 and 60Al40V masteralloy powders, J. Alloys Compd., 818(2020), art. No. 152815. doi: 10.1016/j.jallcom.2019.152815
    [38]
    X.X. Ye, H. Imai, J.H. Shen, et al., Dynamic recrystallization behavior and strengthening-toughening effects in a near-α Ti–xSi alloy processed by hot extrusion, Mater. Sci. Eng. A, 684(2017), p. 165. doi: 10.1016/j.msea.2016.12.054
    [39]
    Y.X. Li, P.F. Gao, J.Y. Yu, S. Jin, S.Q. Chen, and M. Zhan, Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation, J. Mater. Sci. Technol., 98(2022), p. 72. doi: 10.1016/j.jmst.2021.05.008
    [40]
    Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, and Y.T. Zhu, Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient, Scripta. Mater., 174(2020), p. 19. doi: 10.1016/j.scriptamat.2019.08.022
    [41]
    X.Z. Ma, Z.L. Xiang, T. Li, et al., Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1596. doi: 10.1007/s12613-021-2248-8
    [42]
    L. Lei, Q.Y. Zhao, C. Wu, et al., Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy, J. Mater. Sci. Technol., 99(2022), p. 101. doi: 10.1016/j.jmst.2021.04.069
    [43]
    W. Long, S. Zhang, Y.L. Liang, and M.G. Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 296. doi: 10.1007/s12613-020-1996-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(166) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return