Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.899-906. https://dx.doi.org/10.1007/s12613-023-2810-7
Cite this article as: Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.899-906. https://dx.doi.org/10.1007/s12613-023-2810-7

Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries

  • Incorporating a selenium (Se) positive electrode into aluminum (Al)-ion batteries is an effective strategy for improving the overall battery performance. However, the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products. In this work, we aim to harness the advantages of Se while reducing its limitations by preparing a core–shell mesoporous carbon hollow sphere with a titanium nitride (C@TiN) host to load 63.9wt% Se as the positive electrode material for Al–Se batteries. Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN, the obtained core–shell mesoporous carbon hollow spheres coated with Se (Se@C@TiN) display superior utilization of the active material and remarkable cycling stability. As a result, Al–Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g−1 at a current density of 1000 mA·g−1 while maintaining a discharge specific capacity of 86.0 mAh·g−1 over 200 cycles. This improved cycling performance is ascribed to the high electrical conductivity of the core–shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return