Leyi Zhang, Hongyu Jin, Hanxin Liao, Rao Zhang, Bochong Wang, Jianyong Xiang, Congpu Mu, Kun Zhai, Tianyu Xue,  and Fusheng Wen, Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1912-1921. https://doi.org/10.1007/s12613-023-2820-5
Cite this article as:
Leyi Zhang, Hongyu Jin, Hanxin Liao, Rao Zhang, Bochong Wang, Jianyong Xiang, Congpu Mu, Kun Zhai, Tianyu Xue,  and Fusheng Wen, Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1912-1921. https://doi.org/10.1007/s12613-023-2820-5
Research Article

Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel

+ Author Affiliations
  • Corresponding authors:

    Bochong Wang    E-mail: wangbch2008@hotmail.com

    Congpu Mu    E-mail: congpumu@ysu.edu.cn

    Fusheng Wen    E-mail: wenfsh03@126.com

  • Received: 11 October 2023Revised: 24 December 2023Accepted: 26 December 2023Available online: 27 December 2023
  • Electronic devices have become ubiquitous in our daily lives, leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors. A prime example of this trend is the aramid nanofibers/polypyrrole/nickel (APN) aerogels, which serve dual roles as both microwave absorbers and pressure sensors. In this work, we focused on the preparation of aramid nanofibers/polypyrrole (AP15) aerogels, where the mass ratio of aramid nanofibers to pyrrole was 1:5. We employed the oxidative polymerization method for the preparation process. Following this, nickel was thermally evaporated onto the surface of the AP15 aerogels, resulting in the creation of an ultralight (9.35 mg·cm−3). This aerogel exhibited a porous structure. The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching, thereby improving electromagnetic wave absorption performance. The minimum reflection loss value achieved was −48.7 dB, and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm. These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching. Moreover, the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation, flame-retardant properties, and compression resilience. Even under a compression strain of 50%, the aerogel maintained its resilience over 500 cycles. The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel. Consequently, the final APN aerogel sensor demonstrated high sensitivity (10.78 kPa−1) and thermal stability. In conclusion, the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.
  • loading
  • Supplementary Information-s12613-023-2820-5.docx
  • [1]
    C.L. Russell, 5G wireless telecommunications expansion: public health and environmental implications, Environ. Res., 165(2018), p. 484. doi: 10.1016/j.envres.2018.01.016
    [2]
    S.M.S. Reyhani, and S.A. Ludwing, An implanted spherical head model exposed to electromagnetic fields at a mobile communication frequency, IEEE Trans. Biomed. Eng., 53(2006), No. 10, p. 2092. doi: 10.1109/TBME.2006.881770
    [3]
    Z.X. Cai, L. Su, H.J. Wang, et al., Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction, Carbon, 191(2022), p. 227. doi: 10.1016/j.carbon.2022.01.036
    [4]
    R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
    [5]
    J.J. Zhou, X.Y. Wang, K.Y. Ge, et al., Core–shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption, J. Colloid Interface Sci., 607(2022), p. 881. doi: 10.1016/j.jcis.2021.09.022
    [6]
    X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, and W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials, Adv. Funct. Mater., 32(2022), No. 5, art. No. 2107508. doi: 10.1002/adfm.202107508
    [7]
    D.D. Min, W.C. Zhou, Y.C. Qing, F. Luo, and D.M. Zhu, Single-layer and double-layer microwave absorbers based on graphene nanosheets/epoxy resin composite, Nano, 12(2017), No. 7, art. No. 1750089. doi: 10.1142/S1793292017500898
    [8]
    G.J.H. Melvin, Q.Q. Ni, and Z.P. Wang, Performance of barium titanate@carbon nanotube nanocomposite as an electromagnetic wave absorber, Phys. Status Solidi A, 214(2017), No. 2, art. No. 1600541. doi: 10.1002/pssa.201600541
    [9]
    H.Y. Wang and H.B. Ma, The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2T x nanocomposites, J. Mater. Sci. Mater. Electron., 30(2019), No. 16, p. 15250. doi: 10.1007/s10854-019-01897-7
    [10]
    Z. Zhang, G.H. Wang, W.H. Gu, Y. Zhao, S.L. Tang, and G.B. Ji, A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications, J. Colloid Interface Sci., 605(2022), p. 193. doi: 10.1016/j.jcis.2021.07.085
    [11]
    B.L. Wang, Y.G. Fu, J. Li, and T. Liu, Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption, J. Colloid Interface Sci., 607(2022), p. 1540. doi: 10.1016/j.jcis.2021.09.028
    [12]
    X.J. Cui, Q.R. Jiang, C.S. Wang, et al., Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance, Mater. Today Nano, 16(2021), art. No. 100138. doi: 10.1016/j.mtnano.2021.100138
    [13]
    X.B. Xie, C. Ni, Z.H. Lin, et al., Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application, Chem. Eng. J., 396(2020), art. No. 125205. doi: 10.1016/j.cej.2020.125205
    [14]
    J.N. Hu, C.Y. Liang, J.D. Li, et al., Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci., 570(2021), art. No. 151270. doi: 10.1016/j.apsusc.2021.151270
    [15]
    H.Y. Wang, X.B. Sun, S.H. Yang, et al., 3D ultralight hollow NiCo Compound@MXene composites for tunable and high-efficient microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 206. doi: 10.1007/s40820-021-00727-y
    [16]
    Y.S. Cao, Z. Cheng, R.F. Wang, et al., Multifunctional graphene/carbon fiber aerogels toward compatible electromagnetic wave absorption and shielding in gigahertz and terahertz bands with optimized radar cross section, Carbon, 199(2022), p. 333. doi: 10.1016/j.carbon.2022.07.077
    [17]
    Q.C. Zhang, Z.J. Du, M.M. Hou, et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption, Carbon, 188(2022), p. 442. doi: 10.1016/j.carbon.2021.11.047
    [18]
    L.Y. Liang, Q.M. Li, X. Yan, et al., Multifunctional magnetic Ti3C2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance, ACS Nano, 15(2021), No. 4, p. 6622. doi: 10.1021/acsnano.0c09982
    [19]
    J. Liu, H.B. Zhang, X. Xie, et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14(2018), No. 45, art. No. 1802479. doi: 10.1002/smll.201802479
    [20]
    L. Song, F. Zhang, Y. Chen, et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption, Nanomicro Lett., 14(2022), No. 1, art. No. 152. doi: 10.1007/s40820-022-00905-6
    [21]
    L.L. Bi, Z.L. Yang, L.J. Chen, Z. Wu, and C. Ye, Compressible AgNWs/Ti3C2T x MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins, J. Mater. Chem. A, 8(2020), No. 38, p. 20030. doi: 10.1039/D0TA07044K
    [22]
    Y.N. Ma, Y. Yue, H. Zhang, et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor, ACS Nano, 12(2018), No. 4, p. 3209. doi: 10.1021/acsnano.7b06909
    [23]
    C.X. Yang, W.J. Liu, N.S. Liu, et al., Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 33165. doi: 10.1021/acsami.9b12055
    [24]
    S. Wei, X.Y. Qiu, J.Q. An, Z.M. Chen, and X.X. Zhang, Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application, Compos. Sci. Technol., 207(2021), art. No. 108730. doi: 10.1016/j.compscitech.2021.108730
    [25]
    M.Q. Jian, K.L. Xia, Q. Wang, et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures, Adv. Funct. Mater., 27(2017), No. 9, art. No. 1606066. doi: 10.1002/adfm.201606066
    [26]
    X.J. Xu, R.R. Wang, P. Nie, et al., Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor, ACS Appl. Mater. Interfaces, 9(2017), No. 16, p. 14273. doi: 10.1021/acsami.7b02087
    [27]
    J. Xue, J.W. Chen, J.Z. Song, L.M. Xu, and H.B. Zeng, Wearable and visual pressure sensors based on Zn2GeO4@polypyrrole nanowire aerogels, J. Mater. Chem. C, 5(2017), No. 42, p. 11018. doi: 10.1039/C7TC04147K
    [28]
    Y. Tian, J.K. Han, J.K. Yang, H.P. Wu, and H. Bai, A highly sensitive graphene aerogel pressure sensor inspired by fluffy spider leg, Adv. Mater. Interfaces, 8(2021), No. 15, art. No. 2100511. doi: 10.1002/admi.202100511
    [29]
    L. Pu, Y.P. Liu, L. Li, et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47134. doi: 10.1021/acsami.1c13863
    [30]
    B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers, ACS Nano, 13(2019), No. 7, p. 7886. doi: 10.1021/acsnano.9b02258
    [31]
    F.F. Jia, F. Xie, S.S. Chen, et al., Magnetic Ti3C2T x/Fe3O4/Aramid nanofibers composite paper with tunable electromagnetic interference shielding performance, Appl. Phys. A, 127(2021), No. 3, art. No. 175. doi: 10.1007/s00339-021-04295-1
    [32]
    L. Wang, M.Y. Zhang, B. Yang, J.J. Tan, and X.Y. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor, ACS Nano, 14(2020), No. 8, p. 10633. doi: 10.1021/acsnano.0c04888
    [33]
    S.J. Wang, W.Y. Meng, H.F. Lv, Z.X. Wang, and J.W. Pu, Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing, Carbohydr. Polym., 270(2021), art. No. 118414. doi: 10.1016/j.carbpol.2021.118414
    [34]
    H. Liu, G.Z. Cui, L. Li, Z. Zhang, X.L. Lv, and X.X. Wang, Polypyrrole chains decorated on CoS spheres: A core–shell like heterostructure for high-performance microwave absorption, Nanomaterials, 10(2020), No. 1, art. No. 166. doi: 10.3390/nano10010166
    [35]
    L.J. Yu, L.M. Yu, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, and Q.Q. Ni, Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber, J. Mater. Sci. Mater. Electron., 30(2019), No. 6, p. 5598. doi: 10.1007/s10854-019-00853-9
    [36]
    X.X. Wang, M.X. Yu, W. Zhang, B.Q. Zhang, and L.F. Dong, Synthesis and microwave absorption properties of graphene/nickel composite materials, Appl. Phys. A, 118(2015), No. 3, p. 1053. doi: 10.1007/s00339-014-8873-6
    [37]
    H.J. Wu, J.L. Liu, H.S. Liang, and D.Y. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption, Chem. Eng. J., 393(2020), art. No. 124743. doi: 10.1016/j.cej.2020.124743
    [38]
    C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CT x/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626. doi: 10.1016/j.cej.2020.126626
    [39]
    X. Li, Z.L. Wang, Z. Xiang, et al., Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption, Carbon, 184(2021), p. 115. doi: 10.1016/j.carbon.2021.08.025
    [40]
    Y. Shu, T.K. Zhao, X.H. Li, et al., Surface plasmon resonance-enhanced dielectric polarization endows coral-like Co@CoO nanostructures with good electromagnetic wave absorption performance, Appl. Surf. Sci., 585(2022), art. No. 152704. doi: 10.1016/j.apsusc.2022.152704
    [41]
    X.C. Liang, C.G. Wang, M.J. Yu, Z.Q. Yao, and Y. Zhang, Fe-MOFs derived porous Fe4N@carbon composites with excellent broadband electromagnetic wave absorption properties, J. Alloys Compd., 910(2022), art. No. 164844. doi: 10.1016/j.jallcom.2022.164844
    [42]
    Q.L. Chang, C.P. Li, J. Sui, G.I.N. Waterhouse, Z.M. Zhang, and L.M. Yu, Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for electromagnetic wave absorption, Carbon, 200(2022), p. 166. doi: 10.1016/j.carbon.2022.07.075
    [43]
    H.Y. Tian, J. Qiao, Y.F. Yang, et al., ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption, Chem. Eng. J., 450(2022), art. No. 138011. doi: 10.1016/j.cej.2022.138011
    [44]
    X.C. Zhang, X. Zhang, H.R. Yuan, et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123208. doi: 10.1016/j.cej.2019.123208
    [45]
    Y.H. Zhang, H.X. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, and C.H. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance, J. Alloys Compd., 850(2021), art. No. 156680. doi: 10.1016/j.jallcom.2020.156680
    [46]
    Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, Q.Y. Zhang, and B.L. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave, Carbon, 172(2021), p. 1. doi: 10.1016/j.carbon.2020.09.093
    [47]
    Z. Shan, S.Y. Cheng, F. Wu, et al., Electrically conductive two-dimensional metal-organic frameworks for superior electromagnetic wave absorption, Chem. Eng. J., 446(2022), art. No. 137409. doi: 10.1016/j.cej.2022.137409
    [48]
    B.X. Zhang, T. Prikhna, C.P. Hu, and Z.J. Wang, Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption, Appl. Surf. Sci., 560(2021), art. No. 150027. doi: 10.1016/j.apsusc.2021.150027
    [49]
    H.P. Lv, C. Wu, J. Tang, et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption, Chem. Eng. J., 411(2021), art. No. 128445. doi: 10.1016/j.cej.2021.128445
    [50]
    J. Xu, X. Zhang, Z.B. Zhao, et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties, Small, 17(2021), No. 33, art. No. 2102032. doi: 10.1002/smll.202102032
    [51]
    X.K. Lu, D.M. Zhu, X. Li, and Y.J. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption, Carbon, 197(2022), p. 209. doi: 10.1016/j.carbon.2022.06.019
    [52]
    Y.Y. Dong, X.J. Zhu, F. Pan, et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption, Carbon, 190(2022), p. 68. doi: 10.1016/j.carbon.2022.01.008
    [53]
    Y. Tong, M. He, Y.M. Zhou, et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2T x/RGO ternary composite aerogel for enhanced electromagnetic wave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8212. doi: 10.1021/acssuschemeng.7b04883
    [54]
    Y.L. Ma, Y.B. Li, X. Zhao, et al., Lightweight and multifunctional super-hydrophobic aramid nanofiber/multiwalled carbon nanotubes/Fe3O4 aerogel for microwave absorption, thermal insulation and pollutants adsorption, J. Alloys Compd., 919(2022), art. No. 165792. doi: 10.1016/j.jallcom.2022.165792
    [55]
    X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
    [56]
    W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, and G.B. Ji, Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 102. doi: 10.1007/s40820-021-00635-1
    [57]
    Z.W. Ye, K.J. Wang, X.Q. Li, and J.J. Yang, Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials, J. Alloys Compd., 893(2022), art. No. 162396. doi: 10.1016/j.jallcom.2021.162396
    [58]
    Y.H. Cui, K. Yang, F.R. Zhang, Y.T. Lyu, Q.Y. Zhang, and B.L. Zhang, Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion, Composites Part A, 158(2022), art. No. 106986. doi: 10.1016/j.compositesa.2022.106986
    [59]
    L. Li, H.T. Zhao, P.B. Li, et al., Rough porous N-doped graphene fibers modified with Fe-based Prussian blue analog derivative for wide-band electromagnetic wave absorption, Composites Part B, 243(2022), art. No. 110121. doi: 10.1016/j.compositesb.2022.110121
    [60]
    Q.F. Li, X.Y. Wang, Z.L. Zhang, et al. , In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties, J. Mater. Sci. Mater. Electron., 30(2019), No. 23, p. 20515. doi: 10.1007/s10854-019-02410-w
    [61]
    B. Du, M. Cai, X. Wang, J.J. Qian, C. He, and A.Z. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites, J. Adv. Ceram., 10(2021), No. 4, p. 832. doi: 10.1007/s40145-021-0476-z
    [62]
    S. Chen, Y.L. Chen, D.Q. Li, Y.L. Xu, and F. Xu, Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels, ACS Appl. Mater. Interfaces, 13(2021), No. 7, p. 8754. doi: 10.1021/acsami.0c21392
    [63]
    Q. Xu, X.H. Chang, Z.D. Zhu, et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel, RSC Adv., 11(2021), No. 19, p. 11760. doi: 10.1039/D0RA10929K
    [64]
    Y.S. Yuan and N. Solin, Protein-based flexible conductive aerogels for piezoresistive pressure sensors, ACS Appl. Bio Mater., 5(2022), No. 7, p. 3360. doi: 10.1021/acsabm.2c00348
    [65]
    T.D. Chen, J.Q. Wang, X.Z. Wu, Z.P. Li, and S.R. Yang, Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances, Appl. Surf. Sci., 566(2021), art. No. 150719. doi: 10.1016/j.apsusc.2021.150719
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(392) PDF Downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return