Feng Zhou, Daosheng Peng, Kejiang Li, Alberto N. Conejo, Haotian Liao, Zixin Xiong, Dongtao Li, and Jianliang Zhang, Coke behavior with H2O in a hydrogen-enriched blast furnace: A review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2854-3
Cite this article as:
Feng Zhou, Daosheng Peng, Kejiang Li, Alberto N. Conejo, Haotian Liao, Zixin Xiong, Dongtao Li, and Jianliang Zhang, Coke behavior with H2O in a hydrogen-enriched blast furnace: A review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2854-3
Invited Review

Coke behavior with H2O in a hydrogen-enriched blast furnace: A review

+ Author Affiliations
  • Corresponding authors:

    Kejiang Li    E-mail: likejiang@ustb.edu.cn

    Jianliang Zhang    E-mail: zhang.jianliang@hotmail.com

  • Received: 27 November 2023Revised: 7 February 2024Accepted: 14 February 2024Available online: 19 February 2024
  • Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO2 emissions in the ironmaking process. However, hydrogen-enriched reduction produces large amounts of H2O, which places new demands on coke quality in a blast furnace. In a hydrogen-rich blast furnace, the presence of H2O promotes the solution loss reaction. This result improves the reactivity of coke, which is 20%–30% higher in a pure H2O atmosphere than in a pure CO2 atmosphere. The activation energy range is 110–300 kJ/mol between coke and CO2 and 80–170 kJ/mol between coke and H2O. CO2 and H2O are shown to have different effects on coke degradation mechanisms. This review provides a comprehensive overview of the effect of H2O on the structure and properties of coke. By exploring the interactions between H2O and coke, several unresolved issues in the field requiring further research were identified. This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.
  • loading
  • [1]
    K.J. Li, R. Khanna, J.L. Zhang, et al., The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review, Fuel, 133(2014), p. 194. doi: 10.1016/j.fuel.2014.05.014
    A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev., 33(2014), p. 645. doi: 10.1016/j.rser.2014.02.031
    B. Ghosh, B.K. Sahoo, O.S. Niyogi, et al., Coke Structure Evaluation for BF Coke Making, Int. J. Coal Prep. Util., 38(2017), No. 6, p. 321.
    Q. Shi, B. Zheng, Y. Zheng, et al., Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020, Nat. Commun., 13(2022), No. 1, art. No. 5061. doi: 10.1038/s41467-022-32656-8
    G. Yang, D. Zha, C. Zhang, and Q. Chen, Does environment-biased technological progress reduce CO2 emissions in APEC economies? Evidence from fossil and clean energy consumption, Environ. Sci. Pollut. Res. Int., 27(2020), No. 17, p. 20984. doi: 10.1007/s11356-020-08437-5
    L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals., 10(2020), No. 9, art. No. 1117. doi: 10.3390/met10091117
    L. Tang, X.D. Xue, X. Bo, et al., Contribution of emissions from the iron and steel industry to air quality in China, Environ. Sci., 41(2020), No. 7, p. 2981.
    X.Q. Zhang, The development trend of and suggestions for China’s hydrogen energy industry, Engineering, 7(2021), No. 6, p. 719. doi: 10.1016/j.eng.2021.04.012
    J. Zhao, H.B. Zuo, Y.J. Wang,J.S. Wang, and Q.G. Xue, Review of green and low-carbon ironmaking technology, Ironmaking Steelmaking, 47(2019), p. 296.
    J.X. Li, P. Wang, L.Y. Zhou, and M. Cheng, The reduction of wustite with high oxygen enrichment and high injection of hydrogenous fuel, ISIJ Int., 47(2007), No. 8, p. 1097. doi: 10.2355/isijinternational.47.1097
    C.C. Lan, S.H. Zhang, X.J. Liu, R. Liu, and Q. Lyu, Kinetic behaviors of coke gasification with CO2 and H2O, ISIJ Int., 61(2021), No. 1, p. 167. doi: 10.2355/isijinternational.ISIJINT-2020-401
    J. Haapakangas, H. Suopajärvi, M. Iljana, et al., Coke reactivity in simulated blast furnace shaft conditions, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2357. doi: 10.1007/s11663-016-0677-y
    X.Y. Fan, C. Li, M.D. Wang, et al., Effects of adding different proportions of H2 to the simulated hydrogen-rich blast furnace, Chem. Eng. Technol., 45(2022), No. 12, p. 2284. doi: 10.1002/ceat.202200325
    X.B. Yu, Z.J. Hu, and Y.S. Shen, Modeling of hydrogen shaft injection in ironmaking blast furnaces, Fuel, 302(2021), art. No. 121092. doi: 10.1016/j.fuel.2021.121092
    J. Tang, M.S. Chu, F. Li, et al., Mathematical simulation and life cycle assessment of blast furnace operation with hydrogen injection under constant pulverized coal injection, J. Cleaner Prod., 278(2021), art. No. 123191. doi: 10.1016/j.jclepro.2020.123191
    Z.G. Zhao, X.B. Yu, Y.S. Shen, et al., Model study of shaft injection of reformed coke oven gas in a blast furnace, Energy Fuels, 34(2020), No. 11, p. 15048. doi: 10.1021/acs.energyfuels.0c02683
    Y.N. Qie, Q. Lyu, X.J. Liu, et al., Effect of hydrogen addition on softening and melting reduction behaviors of ferrous burden in gas-injection blast furnace, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2622. doi: 10.1007/s11663-018-1299-3
    V. Shatokha, Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1851. doi: 10.1007/s12613-022-2474-8
    A.M. Heikkilä, A.M. Koskela, M.O. Iljana, et al., Coke Gasification in blast furnace shaft conditions with H2 and H2O containing atmospheres, Steel Res. Int., 92(2021), No. 3, art. No. 2000456. doi: 10.1002/srin.202000456
    B.J. Yi, L.Q. Zhang, Q.X. Yuan, S.P. Yan, and C.G. Zheng, The evolution of coal char structure under the oxy-fuel combustion containing high H2O, Fuel Process. Technol., 152(2016), p. 294. doi: 10.1016/j.fuproc.2016.06.017
    S.M. Shin and S.M. Jung, Gasification effect of metallurgical coke with CO2 and H2O on the porosity and macrostrength in the temperature range of 1100 to 1500°C, Energy Fuels, 29(2015), No. 10, p. 6849. doi: 10.1021/acs.energyfuels.5b01235
    Y. Ono, Y. Fukuda, Y. Sumitani, et al., Experimental and numerical study on degradation behavior of coke with CO2 or H2O gasification reaction at high temperature, Fuel, 309(2022), art. No. 122061. doi: 10.1016/j.fuel.2021.122061
    Y. Numazawa, Y. Hara, Y. Matsukawa, et al., Kinetic modeling of CO2 and H2O gasification reactions for metallurgical coke using a distributed activation energy model, ACS Omega, 6(2021), No. 17, p. 11436. doi: 10.1021/acsomega.1c00443
    R.S. Xu, B.W. Dai, W. Wang, J. Schenk, A. Bhattacharyya, and Z.L. Xue, Gasification reactivity and structure evolution of metallurgical coke under H2O/CO2 atmosphere, Energy Fuels, 32(2018), No. 2, p. 1188. doi: 10.1021/acs.energyfuels.7b03023
    P. Wang, Y.Q. Zhang, H.M. Long, et al., Degradation behavior of coke reacting with H2O and CO2 at high temperature, ISIJ Int., 57(2017), No. 4, p. 643. doi: 10.2355/isijinternational.ISIJINT-2016-488
    M.W. Chapman, R.J. Nightingale, and B.J. Monaghan, Influence of coke ash on blast furnace hearth behaviour, [in] Australasian Conference on Chemical Engineering, 2011, P. 1.
    M. Grigore, R. Sakurovs, D. French, and V. Sahajwalla, Influence of mineral matter on coke reactivity with carbon dioxide, ISIJ Int., 46(2006), No. 4, p. 503. doi: 10.2355/isijinternational.46.503
    Q. Wang, R. Guo, X.F. Zhao, J.F. Sun, S. Zhang, and W.Z. Liu, A new testing and evaluating method of cokes with greatly varied CRI and CSR, Fuel., 182(2016), p. 879. doi: 10.1016/j.fuel.2016.05.101
    R.J. Yan, Z.G. Liu, M.S. Chu, and P.J. Liu, Effect of coke reactivity on softening-melting and dripping behaviors of sinter, Ironmaking Steelmaking., 50(2023), No. 8, p. 1094. doi: 10.1080/03019233.2023.2200621
    M.D. Casal, C. Barriocanal, M.A. Díez, and R. Alvarez, Influence of porosity and fissuring on coking pressure generation, Fuel, 87(2008), No. 12, p. 2437. doi: 10.1016/j.fuel.2008.03.011
    Y. Kubota, S. Nomura, T. Arima, and K. Kato, Quantitative evaluation of relationship between coke strength and pore structure, ISIJ Int., 51(2011), No. 11, p. 1800. doi: 10.2355/isijinternational.51.1800
    R. Guo and Q. Wang, Relationship between coke properties and solution loss behavior and its influence on post-reaction strength of coke, Rev. Metall., 109(2012), No. 6, p. 443. doi: 10.1051/metal/2012039
    I. Mochida, S.H. Yoon, and W.M. Qiao, Catalysts in syntheses of carbon and carbon precursors, J. Braz. Chem. Soc., 17(2006), No. 6, p. 1059. doi: 10.1590/S0103-50532006000600002
    Y. Tian, G.Y. Li, H. Zhang, J.P. Wang, et al., Molecular basis for coke strength: Stacking-fault structure of wrinkled carbon layers, Carbon, 162(2020), p. 56. doi: 10.1016/j.carbon.2020.02.026
    J. A. Menéndez, R. Álvarez, and J. J. Pis, Determination of metallurgical coke reactivity at INCAR: NSC and ECE-INCAR reactivity tests, Ironmaking Steelmaking, 26(1999), No. 2, p. 117. doi: 10.1179/030192399676997
    K. Kojima, T.T. Nishi, T. Yamaguchi, H. Nakama, and S. Ida, Changes in the properties of coke in blast furnace, ISIJ Int., 17(1977), No. 7, p. 401. doi: 10.2355/isijinternational1966.17.401
    M. Hatano, B. Hiraoka, M. Fukuda, and T. Masuike, Analysis of the combustion zone in the experimental blast furnace, ISIJ Int., 17(1977), No. 2, p. 102. doi: 10.2355/isijinternational1966.17.102
    B. Ghosh, B.K. Sahoo, B. Chakraborty, et al., Influence of coke structure on coke quality using image analysis method, Int. J. Coal Sci. Technol., 5(2018), No. 4, p. 473. doi: 10.1007/s40789-018-0227-0
    Q.F. Zhong, Q.Y. Mao, L.Y. Zhang, J.H. Xiang, J. Xiao, and J.P. Mathews, Structural features of Qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation, Carbon, 129(2018), p. 790. doi: 10.1016/j.carbon.2017.12.106
    X. Xing, H. Rogers, G.Q. Zhang, et al., Coke degradation under simulated blast furnace conditions, ISIJ Int., 56(2016), No. 5, p. 786. doi: 10.2355/isijinternational.ISIJINT-2015-704
    X. Xing, H. Rogers, G.Q. Zhang, et al., Changes in pore structure of metallurgical cokes under blast furnace conditions, Energy Fuels, 30(2015), No. 1, p. 161.
    K.J. Li, J.L. Zhang, Y.X. Liu, et al., Graphitization of coke and its interaction with slag in the hearth of a blast furnace, Metall. Mater. Trans. B, 47(2016), No. 2, p. 811. doi: 10.1007/s11663-015-0574-9
    X.M. Zhang, S.Q. Wang, H. Chen, et al., Observation of carbon nanostructure and evolution of chemical structure from coal to graphite by high temperature treatment, using componential determination, X-ray diffraction and high-resolution transmission electron microscope, Fuel, 332(2023), No. 1, art. No. 126145.
    K.J. Li, H. Zhang, G.Y. Li, et al., ReaxFF molecular dynamics simulation for the graphitization of amorphous carbon: A parametric study, J. Chem. Theory Comput., 14(2018), No. 5, p. 2322. doi: 10.1021/acs.jctc.7b01296
    H. Zhang, Relationship of coke reactivity and critical coke properties, Metall. Mater. Trans. B, 50(2019), No. 1, p. 204. doi: 10.1007/s11663-018-1438-x
    M.M. Sun, J.L. Zhang, K.J. Li, et al., The interfacial behavior between coke and liquid iron: A comparative study on the influence of coke pore, carbon structure and ash, JOM, 72(2020), No. 6, p. 2174. doi: 10.1007/s11837-020-04048-0
    Z.Z. Ding, Z. Sun, Q. Lu, et al., Boudouard reaction accompanied by graphitization of wrinkled carbon layers in coke gasification: A theoretical insight into the classical understanding, Fuel, 297(2021), art. No. 120747. doi: 10.1016/j.fuel.2021.120747
    S. Pusz, M. Krzesi'nska, Ł. Smkedowski, J. Majewska, B. Pilawa, and B. Kwieci'nska, Changes in a coke structure due to reaction with carbon dioxide, Int. J. Coal Geol., 81(2010), No. 4, p. 287. doi: 10.1016/j.coal.2009.07.013
    R. Guo, C. Duan, Z. Sun, et al., Effect of pore structure and matrix reactivity on coke reactivity and post-reaction strength, Metall. Res. Technol., 114(2017), No. 5, art. No. 504. doi: 10.1051/metal/2017037
    R.J. Longbottom, J. Perkins, G. O’brien, and B.J. Monaghan, Effects of blast furnace representative temperatures and gas compositions on coke reactivity, ISIJ Int., 63(2023), No. 2, p. 282. doi: 10.2355/isijinternational.ISIJINT-2022-396
    S. Gupta, Z.Z. Ye, R. Kanniala, O. Kerkkonen, and V. Sahajwalla, Coke graphitization and degradation across the tuyere regions in a blast furnace, Fuel, 113(2013), p. 77. doi: 10.1016/j.fuel.2013.05.074
    D. Vogt, J.V. Weber, J.N. Rouzaud, and M. Schneider, Coke properties and their microstructure Part II: Coke carboxyreactivity: Relations to their texture, Fuel Process. Technol., 20(1988), p. 155. doi: 10.1016/0378-3820(88)90016-1
    M.A. Dı́ez, R. Alvarez, and C. Barriocanal, Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking, Int. J. Coal Geol., 50(2002), No. 1-4, p. 389. doi: 10.1016/S0166-5162(02)00123-4
    S. Nomura, M. Naito, and K. Yamaguchi, Post-reaction strength of catalyst-added highly reactive coke, ISIJ Int., 47(2007), No. 6, p. 831. doi: 10.2355/isijinternational.47.831
    T. Akiyama, H. Sato, A. Muramatsu, and J.I. Yagi, Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission and effective use of exergy, ISIJ Int., 33(1994), No. 11, p. 1136.
    P.R. Austin, H. Nogami, and J.I. Yagi, Prediction of blast furnace performance with top gas recycling, ISIJ Int., 38(1998), No. 3, p. 239. doi: 10.2355/isijinternational.38.239
    W.H. Chen, C.L. Hsu, and S.W. Du, Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace, Energy, 86(2015), p. 758. doi: 10.1016/j.energy.2015.04.087
    V. Trinkel, N. Kieberger, T. Bürgler, et al., Influence of waste plastic utilisation in blast furnace on heavy metal emissions, J. Cleaner Prod., 94(2015), p. 312. doi: 10.1016/j.jclepro.2015.02.018
    Z.Y. Chang, P. Wang, J.L. Zhang, et al., Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1402. doi: 10.1007/s12613-018-1694-4
    Y. Iwanaga and K. Takatani, Degradation behavior of coke at high-temperature zone in blast furnace, ISIJ Int., 28(1988), p. 990. doi: 10.2355/isijinternational1966.28.990
    J.X. Li, K.C. Lu, J.J. Wang, et al., Influence of H2O–CO2 gas mixture on coke degradation, J. Anhui Univ. Technol. Nat. Sci., 25(2008), No. 3, p. 233.
    W. Wang, B.W. Dai, R.S. Xu, Schenk, J. Wang, and Z.L. Xue, The Effect of H2O on the Reactivity and Microstructure of Metallurgical Coke, Steel Res. Int., 88(2017), No. 8, art. No. 1700063. doi: 10.1002/srin.201700063
    L. Liang, Z. Sun, H. Zhang, et al., Theoretical insight into the competitive effect of CO2 and additive H2O in coke gasification, Chem. Eng. J., 461(2023), art. No. 142003. doi: 10.1016/j.cej.2023.142003
    X.S. Wang, Y.H. Cheng, and L.J. Li, Protein function prediction based on active semi-supervised learning, Chin. J. Electron., 25(2016), No. 4, p. 595. doi: 10.1049/cje.2016.07.005
    W.T. Guo, Q.G. Xue, Y.L. Liu, et al., Kinetic analysis of gasification reaction of coke with CO2 or H2O, Int. J. Hydrogen Energy, 40(2015), p. 13306. doi: 10.1016/j.ijhydene.2015.07.048
    C.C. Lan, Q. Lyu, X.J. Liu, M.F. Jiang, Y.N. Qie, and S.H. Zhang, Thermodynamic and kinetic behaviors of coke gasification in N2–CO–CO2–H2–H2O, Int. J. Hydrogen Energy., 43(2018), No. 42, p. 19405. doi: 10.1016/j.ijhydene.2018.08.216
    J. Tanner and S. Bhattacharya, Kinetics of CO2 and steam gasification of Victorian brown coal chars, Chem. Eng. J., 285(2016), p. 331. doi: 10.1016/j.cej.2015.09.106
    Z.S. Liu and Q. Wang, Non-isothermal kinetics of metallurgical coke gasification by carbon dioxide, Coke Chem., 60(2017), No. 4, p. 140. doi: 10.3103/S1068364X17040020
    X.Y. Fan, C. Li, M.D. Wang, et al., Gasification and kinetic study on metallurgical cokes in CO2–N2–H2O and CO2–N2 atmosphere, Energy Sources Part A: Recovery Util. Environ. Eff., 45(2023), No. 1, p. 2144.
    H. Zhang, Gasification of metallurgical coke in CO2-CO-N2 with and without H2, Chem. Eng. J., 347(2018), p. 440. doi: 10.1016/j.cej.2018.03.135
    L.X. Zhang, J.J. Huang Y.T. Fang, and Y. Wang, Study on reactivity of Chinese anthracite chars gasification—Comparison of reactivity between steam and CO2 gasification, J. Fuel Chem. Technol., 34(2006), No. 3, p. 265.
    W.T. Guo, J.S. Wang, X.F. She, Q.G. Xue, and Z.C. Guo, Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam, J. Fuel Chem. Technol., 43(2015), No. 06 p. 8.
    F. Rodríguez-Reinoso, M. Molina-Sabio, and M.T. González, The use of steam and CO2 as activating agents in the preparation of activated carbons, Carbon, 33(1995), No. 1, p. 15. doi: 10.1016/0008-6223(94)00100-E
    K. Zhu, Z.M. Chen, S.X. Ye, S.H. Geng, Y.W. Zhang, and X.G. Lu, Gasification of iron coke and cogasification behavior of iron coke and coke under simulated hydrogen-rich blast furnace condition, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1839. doi: 10.1007/s12613-022-2429-0
    G.Y. Li, F. Wang, J.P. Wang, Y.Y. Li, A.Q. Li, and Y.H. Liang, ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite, Fuel, 181(2016), p. 238. doi: 10.1016/j.fuel.2016.04.068
    K.J. Li, H.T. Li, M.M. Sun, et al., Atomic-scale understanding about coke carbon structural evolution by experimental characterization and ReaxFF molecular dynamics, Energy Fuels, 33(2019), No. 11, p. 10941. doi: 10.1021/acs.energyfuels.9b03154
    Z. Liang, K.J. Li, Z.M. Wang, Y.S. Bu, and J.L. Zhang, Adsorption and reaction mechanisms of single and double H2O molecules on graphene surfaces with defects: A density functional theory study, Phys. Chem. Chem. Phys., 23(2021), No. 34, p. 19071. doi: 10.1039/D1CP02595C
    Y. Sumitani, Y. Ono, Y. Saito, et al., Effect of changes in mechanical properties of coke matrix caused by CO2 or H2O gasification reaction on the strength of lump coke, ISIJ Int., 61(2021), No. 1, p. 119. doi: 10.2355/isijinternational.ISIJINT-2020-292
    C. Zou, L. Zhang, S.Y. Cao, and C.G. Zheng, A study of combustion characteristics of pulverized coal in O2/H2O atmosphere, Fuel, 115(2014), p. 312. doi: 10.1016/j.fuel.2013.07.025
    B.J. Yi, L.Q. Zhang, F. Huang, et al., Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere, Appl. Energy, 132(2014), p. 349. doi: 10.1016/j.apenergy.2014.07.031
    C. Guizani, F.E. Sanz, and S. Salvador, The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2, Fuel, 108(2013), p. 812. doi: 10.1016/j.fuel.2013.02.027
    C. Chen, J. Wang, W. Liu, et al., Effect of pyrolysis conditions on the char gasification with mixtures of CO2 and H2O, Proc. Combust. Inst., 34(2013), No. 2, p. 2453. doi: 10.1016/j.proci.2012.07.068
    T.F. Liu, Y.T. Fang, and Y. Wang, An experimental investigation into the gasification reactivity of chars prepared at high temperatures, Fuel, 87(2008), No. 4-5, p. 460. doi: 10.1016/j.fuel.2007.06.019
    E. Donskoi, A. Poliakov, M.R. Mahoney, and O. Scholes, Novel optical image analysis coke characterisation and its application to study of the relationships between coke Structure, coke strength and parent coal composition, Fuel, 208(2017), p. 281. doi: 10.1016/j.fuel.2017.07.021
    J.C. Ouyang, D.K. Hong, L.K. Jiang, et al., Effect of CO2 and H2O on char properties. Part 1: Pyrolysis char structure and reactivity, Energy Fuels, 34(2020), No. 4, p. 4243. doi: 10.1021/acs.energyfuels.0c00032
    Y.Q. Niu, S.Q. Liu, B.K. Yan, et al., Experimental and kinetics studies on separate physicochemical effects of steam on coal char combustion, Combust. Flame., 220(2020), p. 168. doi: 10.1016/j.combustflame.2020.06.035
    D.K. Hong, Z.H. Li, T. Si, and X. Guo, A study of the effect of H2O on char oxidation during O2/H2O combustion using reactive dynamic simulation, Fuel, 280(2020), p. 118713. doi: 10.1016/j.fuel.2020.118713
    Y. Miura, Recent studies on the properties of blast furnace coke and their future prospect, ISIJ Int., 22(1982), No. 7, p. 483. doi: 10.2355/isijinternational1966.22.483
    H. Yamaoka and S. Suyama, Prediction model of coke strength after gasification reaction, ISIJ Int., 43(2003), No. 3, p. 338. doi: 10.2355/isijinternational.43.338
    X.Y. Fan, C. Li, M.D. Wang, et al., Dissolution losses of metallurgical cokes in CO2–H2O mixtures, Energy Sources Part A, 44(2022), No. 4, p. 9172. doi: 10.1080/15567036.2022.2131017
    M. Acik and Y.J. Chabal, Nature of Graphene Edges: A Review, Jpn. J. Appl. Phys., 50(2011), art. No. 070101. doi: 10.1143/JJAP.50.070101
    H. Jin, Y.J. Lu, B. Liao, L.J. Guo, and X.M. Zhang, Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor, Int. J. Hydrogen Energy., 35(2010), No. 13, p. 7151. doi: 10.1016/j.ijhydene.2010.01.099
    Y.H. Huang, H. Yamashita, and A. Tomita, Gasification reactivities of coal macerals, Fuel Process. Technol., 29(1991), No. 1-2, p. 75. doi: 10.1016/0378-3820(91)90018-8
    Y.H. Bai, P. Lv, X.H. Yang, et al., Gasification of coal char in H2O/CO2 atmospheres: Evolution of surface morphology and pore structure, Fuel, 218(2018), p. 236. doi: 10.1016/j.fuel.2017.11.105
    J. Xu, S. Su, Z.J. Sun, et al., Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy–steam combustion process, Appl. Energy., 182(2016), No., p. 20.
    S. Ban, J. Xie, Y.J. Wang, B. Jing, B. Liu, and H.J. Zhou, Insight into the nanoscale mechanism of rapid H2O transport within a graphene oxide membrane: Impact of oxygen functional group clustering, ACS Appl. Mater. Interfaces., 8(2016), No. 1, p. 321. doi: 10.1021/acsami.5b08824
    J.I. Rodero, J. Sancho-Gorostiaga, M. Ordiales, et al., Blast furnace and metallurgical coke’s reactivity and its determination by thermal gravimetric analysis, Ironmaking Steelmaking., 42(2015), No. 8, p. 618. doi: 10.1179/1743281215Y.0000000016
    B. Gao, J.L. Zhang, H.B. Zuo, C.L. Qi, Y. Rong, and Z. Wang, CO2 gasification characteristics of high and low reactivity cokes, J. Iron Steel Res. Int., 21(2014), No. 8, p. 723. doi: 10.1016/S1006-706X(14)60133-3
    R. Sakurovs, and L. Burke, Influence of gas composition on the reactivity of cokes, Fuel Process. Technol., 92(2011), No. 6, p. 1220. doi: 10.1016/j.fuproc.2011.01.019
    Y. Kashiwaya, and K. Ishii, Kinetic analysis of coke gasification based on non-crystal/crystal ratio of carbon, ISIJ Int., 31(1991), No. 5, p. 440. doi: 10.2355/isijinternational.31.440
    Y. Iwanaga, and K. Takatani, Mathematical model analysis for oxidation of coke at high temperature, ISIJ Int., 29(1989), No. 1, p. 43. doi: 10.2355/isijinternational.29.43
    B. Van Der Velden, J. Trouw, R. Chaigneau, and J. Van Den Berg, Coke reactivity under simulated blast furnace conditions. [in] The 58 th Ironmaking Conference, Chicigo, 1999, P. 275.
    J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No.10, p. 1830. doi: 10.1007/s12613-022-2518-0
    X.D. Mao, P. Garg, X.J. Hu, et al., Kinetic analysis of iron ore powder reaction with hydrogen—carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No.10, p. 1882. doi: 10.1007/s12613-022-2512-6
    C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, and M.F. Jiang, Change and mechanism analysis of the softening-melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, Int. J. Hydrogen Energy., 45(2020), No. 28, p. 14255. doi: 10.1016/j.ijhydene.2020.03.143
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(124) PDF Downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint