Zongli Yi, Jiguo Shan, Yue Zhao, Zhenlin Zhang, and Aiping Wu, Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2869-9
Cite this article as:
Zongli Yi, Jiguo Shan, Yue Zhao, Zhenlin Zhang, and Aiping Wu, Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2869-9
Invited Review

Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys

+ Author Affiliations
  • Corresponding authors:

    Jiguo Shan    E-mail: shanjg@tsinghua.edu.cn

    Yue Zhao    E-mail: zhao-yue@tsinghua.edu.cn

  • Received: 10 October 2023Revised: 23 February 2024Accepted: 26 February 2024Available online: 28 February 2024
  • Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines, aeronautics, and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures. Fusion welding serves as an effective means for joining and repairing these alloys; however, fusion welding-induced liquation cracking has been a challenging issue. This paper comprehensively reviewed recent liquation cracking, discussing the formation mechanisms, cracking criteria, and remedies. In recent investigations, regulating material composition, changing the preweld heat treatment of the base metal, optimizing the welding process parameters, and applying auxiliary control methods are effective strategies for mitigating cracks. To promote the application of nickel-based superalloys, further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
  • loading
  • [1]
    G.J. Satish, V.N. Gaitonde, and V.N. Kulkarni, Traditional and non-traditional machining of nickel-based superalloys: A brief review, Mater. Today Proc., 44(2021), p. 1448. doi: 10.1016/j.matpr.2020.11.632
    G. Gudivada and A.K. Pandey, Recent developments in nickel-based superalloys for gas turbine applications: Review, J. Alloys Compd., 963(2023), art. No. 171128. doi: 10.1016/j.jallcom.2023.171128
    D.K. Ganji and G. Rajyalakshmi, Influence of alloying compositions on the properties of nickel-based superalloys: A review, [in] H. Kumar and P.K. Jain, eds., Recent Advances in Mechanical Engineering, Springer, Singapore, 2020, p. 537.
    S.K. Selvaraj, G. Sundaramali, S.J. Dev, et al., Recent advancements in the field of Ni-based superalloys, Adv. Mater. Sci. Eng., 2021(2021), art. No. 9723450.
    T.Y. Wang, Y.M. Xuan, and X.S. Han, Investigation on hybrid thermal features of aero- engines from combustor to turbine, Int. J. Heat Mass Transf., 200(2023), art. No. 123559. doi: 10.1016/j.ijheatmasstransfer.2022.123559
    R. Darolia, Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects, Int. Mater. Rev., 64(2019), No. 6, p. 355. doi: 10.1080/09506608.2018.1516713
    B.H. Kear and E.R. Thompson, Aircraft gas turbine materials and processes, Science, 208(1980), No. 4446, p. 847. doi: 10.1126/science.208.4446.847
    M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
    H. Li, W.J. Yan, Y. Zhang, et al., Research progress of hot crack in fusion welding of advanced aeronautical materials, J. Mater. Eng., 50(2022), No. 2, p. 50.
    L. Yu and R. Cao, Welding crack of Ni-based alloys: A review, Acta Metall. Sin., 57(2021), No. 1, p. 16.
    A. Behera, A.K. Sahoo, and S.S. Mahapatra, Application of Ni-based superalloy in aero turbine blade: A review, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2023. https://doi.org/10.1177/09544089231219104
    Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
    M.C. Chaturvedi, Liquation cracking in heat affected zone in Ni superalloy welds, Mater. Sci. Forum, 546-549(2007), p. 1163. doi: 10.4028/www.scientific.net/MSF.546-549.1163
    Y. Guo, J.X. Zhang, J.K. Xiong, and P.F. Zhao, Research status of additive repairing technologies for nickel-based cast superalloy blades, Rare Met. Mater. Eng., 50(2021), No. 4, p. 1462.
    A.M.M. Garcia, BLISK fabrication by linear friction welding, [in] E. Benini, ed., Advances in Gas Turbine Technology, InTechOpen, London, 2011.
    M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Weld. Join., 9(2004), No. 1, p. 13. doi: 10.1179/136217104225017099
    T. Saju and M. Velu, Review on welding and fracture of nickel based superalloys, Mater. Today Proc., 46(2021), p. 7161. doi: 10.1016/j.matpr.2020.11.334
    S.S. Sashank, S. Rajakumar, R. Karthikeyan, and D.S. Nagaraju, Weldability, mechanical properties and microstructure of nickel based super alloys: A review, E3S Web Conf., 184(2020), art. No. 01040. doi: 10.1051/e3sconf/202018401040
    G.L. Zhu, D.C. Kong, W.Z. Zhou, et al., Research progress on the crack formation mechanism and cracking-free design of γ′ phase strengthened nickel-based superalloys fabricated by selective laser melting, Acta Metall. Sin., 59(2023), No. 1, p. 16.
    Y. Li, H.N. Kou, M.Y. Li, et al., Research progress on hot cracking in precipitation-strengthened nickel-based superalloys fabricated by laser additive manufacturing, Surf. Technol., 2023. https://link.cnki.net/urlid/50.1083.TG.20230927.1658.012
    R. Kataria, R.P. Singh, P. Sharma, and R.K. Phanden, Welding of super alloys: A review, Mater. Today Proc., 38(2021), p. 265. doi: 10.1016/j.matpr.2020.07.198
    J.T.W. Jappes, A. Ajithram, M. Adamkhan, and D. Reena, Welding on Ni based super alloys–A review, Mater. Today Proc., 60(2022), p. 1656. doi: 10.1016/j.matpr.2021.12.208
    C. Guo, G. Li, S. Li, et al., Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition, Nano Mater. Sci., 5(2023), No. 1, p. 53. doi: 10.1016/j.nanoms.2022.08.001
    H.Y. Wan, Z.Z. Liu, Q.Q. Han, and X. Yi, Laser additive manufacturing of cracking-resistant superalloys, Aeronaut. Sci. Technol., 33(2022), No. 9, p. 26.
    Q.S. Wei, Y. Xie, Q. Teng, M.Y. Shen, S.S. Sun, and C. Cai, Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review, Chin. J. Mech. Eng. Addit. Manuf. Front., 1(2022), No. 4, art. No. 100055.
    J.N. DuPont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
    Z.L. Zhang, Liquation Cracking Behavior During Laser Cladding Repair of Casting Defects in Nickel-Based Superalloy [Dissertation], Tsinghua University, Beijing, 2021, p. 133.
    D.S. Duvall and W.A. Owczarski, Further heat-affected-zone studies in heat-resistant nickel alloys, Welding J., 46(1967), No. 9, p. 423.
    S.L. Li, K.J. Li, Z.P. Cai, and J.L. Pan, Behavior of M23C6 phase in Inconel 617B superalloy during welding, J. Mater. Process. Technol., 258(2018), p. 38. doi: 10.1016/j.jmatprotec.2018.03.009
    L.O. Osoba, R.K. Sidhu, and O.A. Ojo, On preventing HAZ cracking in laser welded DS Rene 80 superalloy, Mater. Sci. Technol., 27(2011), No. 5, p. 897. doi: 10.1179/026708309X12560332736593
    M. Montazeri and F.M. Ghaini, The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding, Mater. Charact., 67(2012), p. 65. doi: 10.1016/j.matchar.2012.02.019
    E. Chauvet, P. Kontis, E.A. Jägle, et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater., 142(2018), p. 82. doi: 10.1016/j.actamat.2017.09.047
    X.L. Feng, A. Hope, and J.C. Lippold, Effect of Cr on eutectic phase formation and solidification temperature range in Ni–Cr–Hf system, Mater. Lett., 116(2014), p. 79. doi: 10.1016/j.matlet.2013.10.115
    Z.Y. Chen and M. Taheri, The effect of pre-heating and pre-cold treatment on the formation of liquation and solidification cracks of nickel-based superalloy welded by laser beam, J. Mater. Res. Technol., 9(2020), No. 5, p. 11162. doi: 10.1016/j.jmrt.2020.07.053
    M.A. González, D.I. Martínez, A. Pérez, H. Guajardo, and A. Garza, Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy, Mater. Charact., 62(2011), No. 12, p. 1116. doi: 10.1016/j.matchar.2011.09.006
    J.J. Xu, X. Lin, P.F. Guo, et al., The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy, J. Alloys Compd., 749(2018), p. 859. doi: 10.1016/j.jallcom.2018.03.366
    J.J. Xu, X. Lin, P.F. Guo, et al., The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy, Mater. Sci. Eng. A, 691(2017), p. 71. doi: 10.1016/j.msea.2017.03.046
    K.C. Chen, T.C. Chen, R.K. Shiue, and L.W. Tsay, Liquation cracking in the heat-affected zone of IN738 superalloy weld, Metals, 8(2018), No. 6, art. No. 387. doi: 10.3390/met8060387
    M. Taheri, Analysis of solidification and liquation cracks in the electron beam welding of IN738 superalloy, Metall. Microstruct. Anal., 10(2021), No. 6, p. 815. doi: 10.1007/s13632-021-00793-z
    H. Naseri, S.M. Sadrossadat, and E. Hajjari, Investigation of the effect of preweld heat treatment on the liquation cracking of GTD-111 superalloy, Mater. Trans., 61(2020), No. 5, p. 903. doi: 10.2320/matertrans.MT-M2019358
    M. Taheri, A. Halvaee, and S.F. Kashani-Bozorg, Effect of Nd:YAG pulsed-laser welding parameters on microstructure and mechanical properties of GTD-111 superalloy joint, Mater. Res. Express, 6(2019), No. 7, art. No. 076549. doi: 10.1088/2053-1591/ab1534
    Ł. Rakoczy, M. Grudzień-Rakoczy, B. Rutkowski, R. Cygan, and A. Zielińska-Lipiec, The role of the microstructural changes during induction preheating on the HAZ liquation cracking susceptibility of Ni-based superalloy, J. Mater. Sci., 59(2024), No. 2, p. 631. doi: 10.1007/s10853-023-09184-x
    A. Mashhuriazar, H. Omidvar, C.H. Gur, and Z. Sajuri, Effect of welding parameters on the liquation cracking behavior of high-chromium Ni-based superalloy, J. Mater. Eng. Perform., 29(2020), No. 12, p. 7843. doi: 10.1007/s11665-020-05292-w
    H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Effects of filler metals on heat-affected zone cracking in IN-939 superalloy gas-tungsten-arc welds, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1068. doi: 10.1007/s11665-020-04617-z
    M.A.G. Albarrán, D.I. Martínez, E. Díaz, et al., Effect of preweld heat treatment on the microstructure of heat-affected zone (HAZ) and weldability of inconel 939 superalloy, J. Mater. Eng. Perform., 23(2014), No. 4, p. 1125. doi: 10.1007/s11665-013-0704-y
    H.R. Zhang, O.A. Ojo, and M.C. Chaturvedi, Nanosize boride particles in heat-treated nickel base superalloys, Scripta Mater., 58(2008), No. 3, p. 167. doi: 10.1016/j.scriptamat.2007.09.049
    Ł. Rakoczy, M. Grudzień-Rakoczy, B. Rutkowski, et al., The role of the strengthening phases on the HAZ liquation cracking in a cast Ni-based superalloy used in industrial gas turbines, Arch. Civ. Mech. Eng., 23(2023), No. 2, art. No. 119. doi: 10.1007/s43452-023-00659-x
    O.T. Ola, O.A. Ojo, and M.C. Chaturvedi, On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy, Philos. Mag., 94(2014), No. 29, p. 3295. doi: 10.1080/14786435.2014.956838
    D.X. Kou, Z.Y. Chen, Z.Z. Chen, Y.Q. Li, Y.L. Ma, and Y.M. Li, Evolution of microstructure in nickel-based C-HRA-2 alloy during welding thermal simulation, Mater. Res. Express, 10(2023), No. 5, art. No. 056505. doi: 10.1088/2053-1591/acd1d3
    Y.R. Zheng, Y.L. Cai, and L.B. Wang, Factors influenced incipient melting in Hf-bearing DS Ni-base superalloys, Acta Metall. Sin., 19(1983), No. 3, p. 190.
    Z.L. Zhang, Y. Zhao, J.G. Shan, et al., Evolution behavior of liquid film in the heat-affected zone of laser cladding non-weldable nickel-based superalloy, J. Alloys Compd., 863(2021), art. No. 158463. doi: 10.1016/j.jallcom.2020.158463
    Y.H. Cheng, J.T. Chen, R.K. Shiue, and L.W. Tsay, The evolution of cast microstructures on the HAZ liquation cracking of Mar-M004 weld, Metals, 8(2018), No. 1, art. No. 35. doi: 10.3390/met8010035
    S. Singh and J. Andersson, Hot cracking in cast alloy 718, Sci. Technol. Weld. Join., 23(2018), No. 7, p. 568. doi: 10.1080/13621718.2018.1429238
    N. Phuraya, I. Phung-On, H. Terasaki, and Y. Komizo, Direct observation of liquation in Ni-base superalloy by using confocal laser scanning microscopy, Key Eng. Mater., 658(2015), p. 36. doi: 10.4028/www.scientific.net/KEM.658.36
    B. Schulz, T. Leitner, and S. Primig, In-situ observation of the incipient melting of borides and its effect on the hot-workability of Ni-based superalloys, J. Alloys Compd., 956(2023), art. No. 170324. doi: 10.1016/j.jallcom.2023.170324
    Z.L. Zhang, Y. Zhao, J.G. Shan, et al., The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure, Mater. Sci. Eng. A, 823(2021), art. No. 141678. doi: 10.1016/j.msea.2021.141678
    J.L. Cann, A. De Luca, D.C. Dunand, et al., Sustainability through alloy design: Challenges and opportunities, Prog. Mater. Sci., 117(2021), art. No. 100722. doi: 10.1016/j.pmatsci.2020.100722
    S. Kou, Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD, Metals, 11(2021), No. 9, art. No. 1442. doi: 10.3390/met11091442
    D.G. Eskin, Suyitno, and L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys, Prog. Mater. Sci., 49(2004), No. 5, p. 629. doi: 10.1016/S0079-6425(03)00037-9
    D.G. Eskin and L. Katgerman, A quest for a new hot tearing criterion, Metall. Mater. Trans. A, 38(2007), No. 7, p. 1511. doi: 10.1007/s11661-007-9169-7
    M. Rappaz, J.M. Drezet, and M. Gremaud, A new hot-tearing criterion, Metall. Mater. Trans. A, 30(1999), No. 2, p. 449. doi: 10.1007/s11661-999-0334-z
    M.L. Zhong, H.Q. Sun, W.J. Liu, X.F. Zhu, and J.J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy, Scripta Mater., 53(2005), No. 2, p. 159. doi: 10.1016/j.scriptamat.2005.03.047
    W.A. Miller and G.A. Chadwick, On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting, Acta Metall., 15(1967), No. 4, p. 607. doi: 10.1016/0001-6160(67)90104-6
    D. Dye, O. Hunziker, and R.C. Reed, Numerical analysis of the weldability of superalloys, Acta Mater., 49(2001), No. 4, p. 683. doi: 10.1016/S1359-6454(00)00361-X
    S.Q. Guo and X.H. Li, Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys, Front. Mater. Sci., 5(2011), No. 2, p. 146. doi: 10.1007/s11706-011-0126-4
    C. Teng, D. Pal, H.J. Gong, et al., A review of defect modeling in laser material processing, Addit. Manuf., 14(2017), p. 137.
    H. Gao, G. Agarwal, M. Amirthalingam, and M.J.M. Hermans, Hot cracking investigation during laser welding of high-strength steels with multi-scale modelling approach, Sci. Technol. Weld. Join., 23(2018), No. 4, p. 287. doi: 10.1080/13621718.2017.1384884
    M. Bayat, W. Dong, J. Thorborg, A.C. To, and J.H. Hattel, A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf., 47(2021), art. No. 102278.
    A. Salehi-Shabestari, A. Khakzadshahandashti, and M.R. Rahimipour, Numerical modelling of electron beam welding (EBW) of Zhs6u superalloy and its experimental validation, Mater. High Temp., 39(2022), No. 1, p. 12. doi: 10.1080/09603409.2021.2002237
    J.J. Xu, X. Lin, Y.F. Zhao, et al., HAZ liquation cracking mechanism of IN-738LC superalloy prepared by laser solid forming, Metall. Mater. Trans. A, 49(2018), No. 10, p. 5118. doi: 10.1007/s11661-018-4826-6
    H. Ruan, S. Rezaei, Y. Yang, D. Gross, and B.X. Xu, A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing, J. Mech. Phys. Solids, 172(2023), art. No. 105169. doi: 10.1016/j.jmps.2022.105169
    Z.K. Wu, J. Zhang, S.C. Wu, C. Xie, and Z. Song, Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components, Nondestr. Test., 42(2020), No. 7, p. 46.
    N. Zhang, M.H. Wang, S.Y. Zhang, et al., Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis, Rare Met. Mater. Eng., 51(2022), No. 7, p. 2698.
    A. du Plessis, I. Yadroitsava, and I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights, Mater. Des., 187(2020), art. No. 108385. doi: 10.1016/j.matdes.2019.108385
    C. Ioannidou, H.H. König, N. Semjatov, et al. , In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges, Mater. Des., 219(2022), art. No. 110790. doi: 10.1016/j.matdes.2022.110790
    Y.J. Xie, M.C. Wang, and M.S. Wang, Recent status of surface treatment of Ni-based superalloys with high Al and Ti content by laser and electrospark fusion welding process and the way to solve welding cracking, China Surf. Eng., 23(2010), No. 5, p. 1.
    S. Kou, Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
    A. Mashhuriazar, M. Badihehaghdam, C.H. Gur, et al., Investigating the effects of repair welding on microstructure, mechanical properties, and corrosion behavior of IN-939 superalloy, J. Mater. Eng. Perform., 32(2023), No. 15, p. 7016. doi: 10.1007/s11665-022-07596-5
    O.A. Ojo, N.L. Richards, and K.R. Vishwakarma, Heat-affected zone cracking in nickel-based superalloys and the role of minor elements, [in] M. Chaturvedi, ed., Welding and Joining of Aerospace Materials, Elsevier, Duxford, 2021, p. 199.
    D. Tomus, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting, Addit. Manuf., 16(2017), p. 65.
    S. Kou, Solidification and liquation cracking issues in welding, JOM, 55(2003), No. 6, p. 37. doi: 10.1007/s11837-003-0137-4
    H. Zhou, Crystal Plasticity Analysis of the Mechanism of Ductility Dip Cracking in Ni-Based Weld Metal [Dissertation], University of Science and Technology of China, Hefei, 2019, p. 14.
    Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, et al., Alloys-by-design: Application to new superalloys for additive manufacturing, Acta Mater., 202(2021), p. 417. doi: 10.1016/j.actamat.2020.09.023
    Z.J. Sun, Y. Ma, D. Ponge, et al., Thermodynamics-guided alloy and process design for additive manufacturing, Nat. Commun., 13(2022), No. 1, art. No. 4361. doi: 10.1038/s41467-022-31969-y
    Z.X. Li, H. Wang, Y. Li, H.J. Kim, and T. Wolfgang, Progress on effect of processes and microelements on liquation cracking of weld heat-affected zone of nickel-based alloy, J. Mech. Eng., 52(2016), No. 6, p. 37. doi: 10.3901/JME.2016.06.037
    S. Griffiths, H.G. Tabasi, T. Ivas, et al., Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy, Addit. Manuf., 36(2020), art. No. 101443.
    W.Z. Zhou, Y.S. Tian, Q.B. Tan, et al., Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion, Addit. Manuf., 58(2022), art. No. 103016.
    H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Effects of pre- and post-weld heat treatment cycles on the liquation and strain-age cracking of IN939 superalloy, Eng. Res. Express, 1(2019), No. 2, art. No. 025026. doi: 10.1088/2631-8695/ab4d6c
    A.T. Egbewande, R.A. Buckson, and O.A. Ojo, Analysis of laser beam weldability of Inconel 738 superalloy, Mater. Charact., 61(2010), No. 5, p. 569. doi: 10.1016/j.matchar.2010.02.016
    D. Krenz, A.T. Egbewande, H.R. Zhang, and O.A. Ojo, Single pass laser joining of Inconel 718 superalloy with filler, Mater. Sci. Technol., 27(2011), No. 1, p. 268. doi: 10.1179/174328409X439105
    M. Pakniat, F.M. Ghaini, and M.J. Torkamany, Effect of heat treatment on liquation cracking in continuous fiber and pulsed Nd:YAG laser welding of HASTELLOY X alloy, Metall. Mater. Trans. A, 48(2017), No. 11, p. 5387. doi: 10.1007/s11661-017-4300-x
    H.A. Shahsavari, A.H. Kokabi, and S. Nategh, Effect of preweld microstructure on HAZ liquation cracking of Rene 80 superalloy, Mater. Sci. Technol., 23(2007), No. 5, p. 547. doi: 10.1179/174328407X179539
    A. Khakzadshahandashti, M.R. Rahimipour, K. Shirvani, and M. Razavi, Weldability and liquation cracking behavior of ZhS6U superalloy during electron-beam welding, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 251. doi: 10.1007/s12613-019-1730-z
    F. Yan, S. Liu, C.J. Hu, C.M. Wang, and X.Y. Hu, Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd:YAG laser welding, J. Mater. Process. Technol., 244(2017), p. 44. doi: 10.1016/j.jmatprotec.2017.01.018
    E.J. Chun, Y.S. Jeong, K.M. Kim, H. Lee, and S.M. Seo, Suppression of liquation cracking susceptibility via pre-weld heat treatment for manufacturing of CM247LC superalloy turbine blade welds, J. Adv. Join. Process., 4(2021), art. No. 100069. doi: 10.1016/j.jajp.2021.100069
    B.G. Zhang, F. Peng, H.Q. Wang, and K. Han, Research progress on liquation cracking of precipitation hardened nickel-based superallloys in fusion welding, Weld. Join., (2019), No. 9, p. 26.
    Q.G. Li, X. Lin, X.H. Wang, et al., Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al+Ti, Appl. Laser, 36(2016), No. 4, p. 471.
    H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 764. doi: 10.1007/s12613-019-1954-y
    N.N. Lu, Z.L. Lei, K. Hu, et al., Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition, Addit. Manuf., 34(2020), art. No. 101228.
    J.W. Wang, H.M. Wang, H.W. Gao, et al., Origin of hot cracking formation and suppression method in laser additive manufactured nickel-based superalloys, Mater. Lett., 352(2023), art. No. 135200. doi: 10.1016/j.matlet.2023.135200
    Y. Chen, F.G. Lu, K. Zhang, et al., Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling, J. Alloys Compd., 670(2016), p. 312. doi: 10.1016/j.jallcom.2016.01.250
    K. RamReddy, E.N. Kumar, R. Jeyaraam, G.D.J. Ram, and V.S. Sarma, Effect of grain boundary character distribution on weld heat-affected zone liquation cracking behavior of AISI 316Ti austenitic stainless steel, Mater. Charact., 142(2018), p. 115. doi: 10.1016/j.matchar.2018.05.020
    R. Jeyaraam, V.S. Sarma, and S. Vedantam, Phase field modelling of annealing twin formation, evolution and interactions during grain growth, Comput. Mater. Sci., 182(2020), art. No. 109787. doi: 10.1016/j.commatsci.2020.109787
    K. Yang, T. An, J.L. Qu, et al., Effects of solution cooling rate on the grain boundary and mechanical properties of GH4710 alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142459. doi: 10.1016/j.msea.2021.142459
    H.U. Hong, H.W. Jeong, I.S. Kim, B.G. Choi, Y.S. Yoo, and C.Y. Jo, Significant decrease in interfacial energy of grain boundary through serrated grain boundary transition, Philos. Mag., 92(2012), No. 22, p. 2809. doi: 10.1080/14786435.2012.676212
    H.U. Hong, I.S. Kim, B.G. Choi, Y.S. Yoo, and C.Y. Jo, On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy, Metall. Mater. Trans. A, 43(2012), No. 1, p. 173. doi: 10.1007/s11661-011-0837-2
    M.Y. Wen, Y. Sun, J.J. Yu, et al., Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries, J. Mater. Sci. Technol., 78(2021), p. 260. doi: 10.1016/j.jmst.2020.10.069
    M. Qian and J.C. Lippold, The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys, Acta Mater., 51(2003), No. 12, p. 3351. doi: 10.1016/S1359-6454(03)00090-9
    B. Choudhury and M. Chandrasekaran, Investigation on welding characteristics of aerospace materials–A review, Mater. Today Proc., 4(2017), No. 8, p. 7519. doi: 10.1016/j.matpr.2017.07.083
    D.Y. Kim, J.H. Hwang, K.S. Kim, and J.G. Youn, A study on fusion repair process for a precipitation hardened IN738 Ni-based superalloy, J. Eng. Gas Turbines Power, 122(2000), No. 3, p. 457. doi: 10.1115/1.1287509
    M. Aqeel, S.M. Shariff, J.P. Gautam, and G. Padmanabham, Liquation cracking in Inconel 617 alloy by Laser and Laser-Arc Hybrid welding, Mater. Manuf. Process., 36(2021), No. 8, p. 904. doi: 10.1080/10426914.2020.1866200
    L.O. Osoba, Z. Gao, and O.A. Ojo, Physical and numerical simulations study of heat input dependence of HAZ cracking in nickel base superalloy IN 718, J. Metall. Eng., 2(2013), No. 3, p. 88.
    O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy, Mater. Sci. Eng. A, 454-455(2007), p. 389. doi: 10.1016/j.msea.2006.11.054
    Y.P. Mei, Y.C. Liu, C.X. Liu, et al., Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718, Mater. Des., 89(2016), p. 964. doi: 10.1016/j.matdes.2015.10.082
    S.X. He, Research on Mechanism and Control of Liquation Cracking of Electron Beam Welded K4169 Alloy Joint [Dissertation], Harbin Institute of Technology, Harbin, 2021, p. 54.
    P.L. Zhang, Z.Y. Jia, Z.S. Yu, et al., A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys, Opt. Laser Technol., 140(2021), art. No. 107094. doi: 10.1016/j.optlastec.2021.107094
    M. Pakniat, F.M. Ghaini, and M.J. Torkamany, Hot cracking in laser welding of Hastelloy X with pulsed Nd: YAG and continuous wave fiber lasers, Mater. Des., 106(2016), p. 177. doi: 10.1016/j.matdes.2016.05.124
    P. Alvarez, L. Vázquez, N. Ruiz, et al., Comparison of hot cracking susceptibility of TIG and laser beam welded alloy 718 by varestraint testing, Metals, 9(2019), No. 9, art. No. 985. doi: 10.3390/met9090985
    Z.L. Wang, Z.T. Zheng, L.B. Zhao, Y.F. Lei, and K. Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 788. doi: 10.1007/s12613-018-1627-2
    Y.Z. Bai, Q.H. Lu, X.H. Ren, H. Yan, and P.L. Zhang, Study of Inconel 718 welded by bead-on-plate laser welding under high-frequency micro-vibration condition, Metals, 9(2019), No. 12, art. No. 1335. doi: 10.3390/met9121335
    M.J. Jose, S.S. Kumar, and A. Sharma, Vibration assisted welding processes and their influence on quality of welds, Sci. Technol. Weld. Join., 21(2016), No. 4, p. 243. doi: 10.1179/1362171815Y.0000000088
    Y.C. Zhang, F.Q. Li, and C.G. Tao, Analysis on welding crack in TIG Co–Cr–W wear layer of K417 alloy blades, Foundry Technol., 34(2013), No. 9, p. 1199.
    R. Ghaffari and H. Naffakh-Moosavy, Investigation of macrostructure, microstructure, and hot cracking susceptibility of laser-welded Inconel-718 superalloy under various post-cold treatment environments, CIRP J. Manuf. Sci. Technol., 37(2022), p. 110. doi: 10.1016/j.cirpj.2022.01.007
    M.F. Chiang and C. Chen, Induction-assisted laser welding of IN-738 nickel-base superalloy, Mater. Chem. Phys., 114(2009), No. 1, p. 415. doi: 10.1016/j.matchemphys.2008.09.051
    Y. Yin, S.T. Li, J.W. Yan, X.G. Shuai, Z. Lv, and C.S. Zhang, GTAW repair welding technology of K423A superalloy parts, Electr. Weld. Mach., 46(2016), No. 7, p. 124.
    Q.Q. Han, R. Mertens, M.L. Montero-Sistiaga, et al., Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism, Mater. Sci. Eng. A, 732(2018), p. 228. doi: 10.1016/j.msea.2018.07.008
    J.L. Xie, Microstructures , Mechanical Properties and Defect Control of Welding Joints of Ni-Based Superalloy for Skew Plate Frame [Dissertation], University of Science and Technology of China, Hefei, 2019, p. 103.
    J.L. Xie, Y.C. Ma, W.W. Xing, L. Zhang, M.Q. Ou, and K. Liu, Heat-affected zone crack healing in IN939 repaired joints using hot isostatic pressing, Weld. World, 62(2018), No. 3, p. 471. doi: 10.1007/s40194-018-0579-5
    Q.G. He, J. Liu, L.X. Li, Z.H. Gao, X.Y. Shi, and G.X. Yang, Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy, Mater. Sci. Forum, 898(2017), p. 401. doi: 10.4028/www.scientific.net/MSF.898.401
    M. Vilanova, F. Garciandia, S. Sainz, D. Jorge-Badiola, T. Guraya, and M.S. Sebastian, The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy, J. Mater. Process. Technol., 300(2022), art. No. 117398. doi: 10.1016/j.jmatprotec.2021.117398
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(87) PDF Downloads(14) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint