Cite this article as: |
Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng, and Runsheng Xu, Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2873-0 |
Xuheng Chen E-mail: chenxuheng0627@163.com
Runsheng Xu E-mail: xurunsheng@ustb.edu.cn
[1] |
J.Y. Yu, R.S. Xu, J.L. Zhang, and A.Y. Zheng, A review on reduction technology of air pollutant in current China’s iron and steel industry, J. Clean. Prod., 414(2023), art. No. 137659. doi: 10.1016/j.jclepro.2023.137659
|
[2] |
C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
|
[3] |
J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
|
[4] |
C. Wu, Y. Zhuo, X. Xu, et al., An integrated experimental and numerical study of iron-coke briquettes’ pyrolysis and reduction behaviour in an industrial-scale pyrolyser, Powder Technol., 409(2022), art. No. 117822. doi: 10.1016/j.powtec.2022.117822
|
[5] |
Z.Y. Wang, D. Han, Z.G. Liu, et al., Gas release characteristics during carbonization of iron coke hot briquette and influence of heating rate, J. Iron Steel Res. Int., 30(2023), No. 11, p. 2163. doi: 10.1007/s42243-023-01046-9
|
[6] |
J. Wang, W. Wang, J.F. Bao, X.F. Chen, L.F. Duan and R.S. Xu, Performance optimization and efficient application of highly reactive iron coke: Research progress and future trend, Steel Res. Int., 94(2023), No. 9, art. No. 2300092. doi: 10.1002/srin.202300092
|
[7] |
F.R. Chen, W. Lv, G.W. Zhou, Z.L. Liu, M.S. Chu, and X.W. Lv, Effects of H2, CO, and a gas mixture on the reduction process of raw and pre-oxidized ilmenite concentrate powders, Int. J. Hydrogen Energy, 55(2024), p. 502. doi: 10.1016/j.ijhydene.2023.11.217
|
[8] |
J. Wang, W. Wang, X.H. Chen, et al., Investigation on the evolution of structure and strength of iron coke during carbonization: Carbon structure, pore structure, and carbonization mechanism, Powder Technol., 431(2024), art. No. 119059. doi: 10.1016/j.powtec.2023.119059
|
[9] |
S. Nomura, K. Higuchi, K. Kunitomo, and M. Naito, Reaction behavior of Formed Iron Coke and Its Effect on Decreasing Thermal Reserve Zone Temperature in Blast Furnace, ISIJ Int., 50(2010), No. 10, p. 1388. doi: 10.2355/isijinternational.50.1388
|
[10] |
S.Z. Shi, S. Lu, X.G. Bi, P. Li, and Q. Zheng, Decreasing of reaction beginning temperature of iron coke and its mechanism, Iron Steel, 50(2015), No. 7, p. 15.
|
[11] |
S.X. Qiu, S.F. Zhang, Q.Y. Zhang, G.B. Qiu, and L.Y. Wen, Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes, J. Iron Steel Res. Int., 24(2017), No. 12, p. 1169. doi: 10.1016/S1006-706X(18)30014-1
|
[12] |
J.W. Bao, M.S. Chu, Z.G. Liu, et al., Research progress on preparation and application of iron coke in blast furnace, Iron Steel, 55(2020), No. 8, p. 38. doi: 10.13228/j.boyuan.issn0449-749x.20200187
|
[13] |
J.W. Bao, M.S. Chu, Z.G. Liu, et al., Effect of carbonization process parameters on metallurgical properties of iron coke, J. Iron Steel Res., 32(2020), No. 7, p. 532. doi: 10.13228/j.boyuan.issn1001-0963.20200059
|
[14] |
H.T. Wang, M.S. Chu, B.Y. Guo, et al., , Investigation on gasification reaction behavior and kinetic analysis of iron coke hot briquette under isothermal conditions, Steel Res. Int., 90(2019), No. 2, art. No. 1800354. doi: 10.1002/srin.201800354
|
[15] |
H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long, Experimental study on impact of iron coke hot briquette as an alternative fuel on isothermal reduction of pellets under simulated blast furnace conditions, Fuel, 268(2020), art. No. 117339. doi: 10.1016/j.fuel.2020.117339
|
[16] |
K. Zhu, Z.M. Chen, S.X. Ye, S.H. Geng, Y.W. Zhang, and X.G. Lu, Gasification of iron coke and cogasification behavior of iron coke and coke under simulated hydrogen-rich blast furnace condition, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1839. doi: 10.1007/s12613-022-2429-0
|
[17] |
Z.J. Liu, M.H. Cao, J.L. Zhang, et al., Synergistic reaction behavior of pyrolysis and reduction of briquette prepared by weakly caking coal and metallurgical dust, J. Iron Steel Res. Int., 30(2023), No. 7, p. 1367. doi: 10.1007/s42243-023-00992-8
|
[18] |
Z.G. Liu, L.G. Cao, M.S. Chu, et al., A new type of composite coke prepared from steel slag and mixed coal: Preparation process and microstructure, Steel Res. Int., 92(2021), No. 7, art. No. 2000697. doi: 10.1002/srin.202000697
|
[19] |
R.S. Xu, S.L. Deng, H. Zheng, W. Wang, M.M. Song, W. Xu, and F.F. Wang, Influence of initial iron ore particle size on CO2 gasification behavior and strength of ferro-coke, J. Iron Steel Res. Int., 27(2020), No. 8, p. 875. doi: 10.1007/s42243-020-00454-5
|
[20] |
R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang, Investigation on the microstructure, thermal strength and gasification mechanism of modified ferro-coke with coal tar pitch, Metall. Mater. Trans. B, 51(2020), No. 4, p. 1526. doi: 10.1007/s11663-020-01867-z
|
[21] |
R.S. Xu, S.L. Deng, H. Zheng, et al., Gasification behaviors of ferrocoke with and without water vapor, Steel Res. Int., 93(2022), No. 11, art. No. 2200575. doi: 10.1002/srin.202200575
|
[22] |
J. Wang, L. Qie, Y. Hu, H. Liu, and G. Zheng, Influence of zinc on nonisothermal gasification kinetics of coke in a blast furnace, ACS Omega, 6(2021), No. 43, p. 28838. doi: 10.1021/acsomega.1c03726
|
[23] |
R.S. Xu, J.L. Zhang, G.W. Wang, et al., Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 773. doi: 10.1007/s10973-015-4972-7
|
[24] |
S.K. Bhatia and D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AlChE J., 26(1980), No. 3, p. 379. doi: 10.1002/aic.690260308
|
[25] |
J. Bai, W. Li, C.Z. Li, Z.Q. Bai, and B.Q. Li, Influences of mineral matter on high temperature gasification of coal char, J. Fuel Chem. Technol., 37(2009), No. 2, p. 134. doi: 10.1016/S1872-5813(09)60014-1
|
[26] |
J. Szekely and J.W. Evans, A structural model for gas–solid reactions with a moving boundary, Chem. Eng. Sci., 25(1970), No. 6, p. 1091. doi: 10.1016/0009-2509(70)85053-9
|
[27] |
J. Fermoso, M.V. Gil, C. Pevida, J.J. Pis, and F. Rubiera, Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars, Chem. Eng. J., 161(2010), No. 1-2, p. 276. doi: https://doi.org/10.1016/j.cej.2010.04.055
|
[28] |
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
|
[29] |
Z.M. Wang, K.L. Pang, K.J. Li, et al., Positive catalytic effect and mechanism of iron on the gasification reactivity of coke using thermogravimetry and density functional theory, ISIJ Int., 61(2021), No. 3, p. 773. doi: 10.2355/isijinternational.ISIJINT-2020-348
|
[30] |
K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, and T.Q. Wang, Gasification of graphite and coke in carbon–carbon dioxide–sodium or potassium carbonate systems, Ind. Eng. Chem. Res., 53(2014), No. 14, p. 5737. doi: 10.1021/ie4039955
|
[31] |
X. Zhang, J. Zhang, R. Guo, Q. Xiao, Y.W. Feng, and H. Cheng, Highly reactive coke made from low-rank coal: Relationship between thermal properties and multilevel structure, Fuel, 337(2023), art. No. 127186. doi: 10.1016/j.fuel.2022.127186
|
[32] |
X. Zhang, H.H. Deng, X.Y. Hou, R.L. Qiu, and Z.H. Chen, Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions, Renewable Energy, 142(2019), p. 284. doi: 10.1016/j.renene.2019.04.115
|
[33] |
G.W. Wang, S. Ren, J.L. Zhang, et al., Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke, Chem. Eng. J., 387(2020), art. No. 124093. doi: 10.1016/j.cej.2020.124093
|
[34] |
G.W. Wang, J.L. Zhang, G.H. Zhang, et al., Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends, Energy, 131(2017), p. 27. doi: 10.1016/j.energy.2017.05.023
|
[35] |
L. Kieush, J. Schenk, A. Pfeiffer, A. Koveria, G. Rantitsch, and H. Hopfinger, Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties, Fuel, 309(2022), art. No. 122151. doi: 10.1016/j.fuel.2021.122151
|
[36] |
M.M. Sun, J.L. Zhang, K.J. Li, K. Guo, Z.M. Wang, and C.H. Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1247. doi: 10.1007/s12613-019-1846-1
|
[37] |
H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, and J.H. Zhang, Pore structure evolution during the coke graphitization process in a blast furnace, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1226. doi: 10.1007/s12613-019-1927-1
|
[38] |
K.J. Li, J.L. Zhang, M. Barati, et al., Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes, Fuel, 145(2015), p. 202. doi: 10.1016/j.fuel.2014.12.086
|
[39] |
T. Murakami and E. Kasai, Utilization of ores with high combined water content for ore–carbon composite and iron coke, ISIJ Int., 51(2011), No. 8, p. 1220. doi: 10.2355/isijinternational.51.1220
|
[40] |
L. Deng, X.L. Huang, Y. Tie, et al., Experimental study on transformation of alkali and alkaline earth metals during biomass gasification, J. Energy Inst., 103(2022), p. 117. doi: 10.1016/j.joei.2022.06.003
|
[41] |
W. Wang, J. Wang, R.S. Xu, Y. Yu, Y. Jin, and Z.L. Xue, Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace, Fuel Process. Technol., 159(2017), p. 118. doi: 10.1016/j.fuproc.2017.01.039
|
[42] |
H. Gohar, A.H. Khoja, A.A. Ansari, et al., Investigating the characterisation, kinetic mechanism, and thermodynamic behaviour of coal–biomass blends in co-pyrolysis process, Process. Saf. Environ. Prot., 163(2022), p. 645. doi: 10.1016/j.psep.2022.05.063
|
[43] |
R. Xu, B.W. Dai, W. Wang, J. Schenk, and Z. Xue, Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking, Fuel Process. Technol., 173(2018), p. 11. doi: 10.1016/j.fuproc.2018.01.006
|
[44] |
J.C. Maya, R. Macías, C.A. Gómez, and F. Chejne, On the evolution of pore microstructure during coal char activation with steam/CO2 mixtures, Carbon, 158(2020), p. 121. doi: 10.1016/j.carbon.2019.11.088
|
[45] |
W. Lv, F.R. Chen, Z.L. Liu, et al. , In situ compressive strength of iron coke in high-temperature carbonization, ISIJ Int., 62(2022), No. 9, p. 1827. doi: 10.2355/isijinternational.ISIJINT-2022-219
|
[46] |
W.T. Guo, Q.G. Xue, C. Ling, H.B. Zuo, J.S. Wang, and Y.H. Han, Influence of pore structure features on the high temperature tensile strength of coke, Chin. J. Eng., 38(2016), No. 7, p. 930. doi: 10.13374/j.issn2095-9389.2016.07.006
|
[47] |
J.W. Bao, M.S. Chu, H.T. Wang, et al., Evolution characteristics and influence mechanism of binder addition on metallurgical properties of iron carbon agglomerates, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2785. doi: 10.1007/s11663-020-01962-1
|
[48] |
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731. doi: 10.1016/j.carbon.2005.02.018
|
[49] |
H. Dang, R.S. Xu, J.L. Zhang, M.Y. Wang, and J.H. Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 268. doi: 10.1007/s12613-023-2728-0
|
[50] |
T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561. doi: 10.1016/0008-6223(95)00117-V
|
[51] |
M.J. Roberts, R.C. Everson, G. Domazetis, et al., Density functional theory molecular modelling and experimental particle kinetics for CO2–char gasification, Carbon, 93(2015), p. 295. doi: 10.1016/j.carbon.2015.05.053
|
[52] |
D. Zhao, H. Liu, C.L. Sun, L.F. Xu, and Q.X. Cao, DFT study of the catalytic effect of Na on the gasification of carbon: CO2, Combust. Flame, 197(2018), p. 471. doi: 10.1016/j.combustflame.2018.09.002
|
[53] |
H. Dang, R.S. Xu, J.L. Zhang, M.Y. Wang, and K. Xu, Hydrothermal carbonization of waste furniture for clean blast furnace fuel production: Physicochemical, gasification characteristics and conversion mechanism investigation, Chem. Eng. J., 469(2023), art. No. 143980. doi: 10.1016/j.cej.2023.143980
|
[54] |
P. Wang, G.W. Wang, J.L. Zhang, J.Y. Lee, Y.J. Li, and C. Wang, Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char, Appl. Therm. Eng., 143(2018), p. 736. doi: 10.1016/j.applthermaleng.2018.08.009
|
[55] |
G.W. Wang, J.L. Zhang, J.G. Shao, et al., Experimental and modeling studies on CO2 gasification of biomass chars, Energy, 114(2016), p. 143. doi: 10.1016/j.energy.2016.08.002
|
[56] |
W. Liang, X. Ning, G.W. Wang, et al., Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke, Renew. Energy, 163(2021), p. 331. doi: 10.1016/j.renene.2020.08.142
|
[57] |
M. Grigore, R. Sakurovs, D. French, and V. Sahajwalla, Coke gasification: The influence and behavior of inherent catalytic mineral matter, Energy Fuels, 23(2009), No. 4, p. 2075. doi: 10.1021/ef8006728
|
[58] |
S.M. Shin and S.M. Jung, Gasification effect of metallurgical coke with CO2 and H2O on the porosity and macrostrength in the temperature range of 1100 to 1500°C, Energy Fuels, 29(2015), No. 10, p. 6849. doi: 10.1021/acs.energyfuels.5b01235
|
[59] |
Q. Wang, E. Wang, K. Li, N. Husnain, and D. Li, Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification, Energy, 191(2020), art. No. 116528. doi: 10.1016/j.energy.2019.116528
|
[60] |
J. Zsakó, The kinetic compensation effect, J. Therm. Anal., 9(1976), No. 1, p. 101. doi: 10.1007/BF01909271
|
[61] |
S. Zhang, Z. Liang, K. Li, J. Zhang, and S. Ren, A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects, J. Mol. Model., 28(2022), No. 5, art. No. 118. doi: 10.1007/s00894-022-05105-y
|