Jirui Ma, Xiaopeng Lu, Santosh Prasad Sah, Qianqian Chen, You Zhang,  and Fuhui Wang, Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2048-2061. https://doi.org/10.1007/s12613-024-2876-x
Cite this article as:
Jirui Ma, Xiaopeng Lu, Santosh Prasad Sah, Qianqian Chen, You Zhang,  and Fuhui Wang, Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2048-2061. https://doi.org/10.1007/s12613-024-2876-x
Research Article

Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions

+ Author Affiliations
  • Corresponding authors:

    Xiaopeng Lu    E-mail: luxiaopeng@mail.neu.edu.cn

    You Zhang    E-mail: youzhang@bipt.edu.cn

  • Received: 12 October 2023Revised: 4 March 2024Accepted: 5 March 2024Available online: 7 March 2024
  • To enhance the long-term corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the magnesium (Mg) alloy, an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating. In this study, the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate (SDS) and sodium dodecyl benzene sulfonate into Ba(NO3)2 post-sealing solutions. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectrometer, and ultraviolet–visible analyses showed that the inhibitors enhanced the incorporation of BaO2 into PEO coatings. Electrochemical impedance showed that post-sealing in Ba(NO3)2/SDS treatment enhanced corrosion resistance by three orders of magnitude. The total impedance value remained at 926 Ω·cm² after immersing in a 0.5wt% NaCl solution for 768 h. A salt spray test for 40 days did not show any obvious region of corrosion, proving excellent post-sealing by Ba(NO3)2/SDS treatment. The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.
  • loading
  • [1]
    J.J. Wang, K.X. Zhang, G.B. Ying, et al., Effects of RE (RE = Sc, Y and Nd) concentration on galvanic corrosion of Mg–Al alloy: A theoretical insight from work function and surface energy, J. Mater. Res. Technol., 24(2023), p. 6958. doi: 10.1016/j.jmrt.2023.04.208
    [2]
    D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: from physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010. doi: 10.1016/j.jallcom.2020.157010
    [3]
    J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, (2020), No. 1, p. 1.
    [4]
    M.C.L. de Oliveira, R.M.P. da Silva, R.M. Souto, and R.A. Antunes, Investigating local corrosion processes of magnesium alloys with scanning probe electrochemical techniques: A review, J. Magnesium Alloys, 10(2022), No. 11, p. 2997. doi: 10.1016/j.jma.2022.09.024
    [5]
    J.H. Liu, Z.H. Yang, D. Li, M. Li, and F.P. Bai, Resistance coefficient for large-scale roughness with seepage through porous bed, J. Hydrol., 590(2020), art. No. 125498. doi: 10.1016/j.jhydrol.2020.125498
    [6]
    Y.M. Zhang, N. Li, N. Ling, J.L. Zhang, and L. Wang, Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating, Chem. Eng. J., 449(2022), art. No. 137778. doi: 10.1016/j.cej.2022.137778
    [7]
    L.Y. Chai, X. Yu, Z.H. Yang, Y.Y. Wang, and M. Okido, Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking, Corros. Sci., 50(2008), No. 12, p. 3274. doi: 10.1016/j.corsci.2008.08.038
    [8]
    M. Daavari, M. Atapour, M. Mohedano, R. Arrabal, E. Matykina, and A. Taherizadeh, Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy, Surf. Interfaces, 22(2021), art. No. 100850. doi: 10.1016/j.surfin.2020.100850
    [9]
    D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, and K.K. Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1435. doi: 10.1007/s12613-022-2419-2
    [10]
    S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
    [11]
    M. Molaei, K. Babaei, and A. Fattah-alhosseini, Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review, J. Magnesium Alloys, 9(2021), No. 4, p. 1164. doi: 10.1016/j.jma.2020.11.016
    [12]
    R.O. Hussein, X. Nie, and D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing, Electrochim. Acta, 112(2013), p. 111. doi: 10.1016/j.electacta.2013.08.137
    [13]
    W.H. Yao, L. Wu, J.F. Wang, et al., Micro-arc oxidation of magnesium alloys: A review, J. Mater. Sci. Technol., 118(2022), p. 158. doi: 10.1016/j.jmst.2021.11.053
    [14]
    H.Y. Fan, N. Ling, R. Bai, J.L. Zhang, and L. Wang, Influence of V-containing species on formation and corrosion resistance of PEO coatings developed on AZ31B Mg alloy, Ceram. Int., 49(2023), No. 15, p. 24783. doi: 10.1016/j.ceramint.2023.04.246
    [15]
    M. Molaei, A. Fattah-alhosseini, M. Nouri, P. Mahmoodi, and A. Nourian, Incorporating TiO2 nanoparticles to enhance corrosion resistance, cytocompatibility, and antibacterial properties of PEO ceramic coatings on titanium, Ceram. Int., 48(2022), No. 14, p. 21005. doi: 10.1016/j.ceramint.2022.04.096
    [16]
    L. Liu, S.R. Yu, G. Zhu, et al., Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite, J. Mater. Sci., 56(2021), No. 27, p. 15379. doi: 10.1007/s10853-021-06252-y
    [17]
    D. Wang, C. Ma, J.Y. Liu, et al., Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1128. doi: 10.1007/s12613-023-2596-7
    [18]
    A.N. Buling and J. Zerrer, Increasing the application fields of magnesium by ultraceramic®: Corrosion and wear protection by plasma electrolytical oxidation (PEO) of Mg alloys, Surf. Coat. Technol., 369(2019), p. 142. doi: 10.1016/j.surfcoat.2019.04.025
    [19]
    X.P. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles, Electrochim. Acta, 196(2016), p. 680. doi: 10.1016/j.electacta.2016.03.042
    [20]
    C. Ma, D. Wang, J.Y. Liu, N. Peng, W. Shang, and Y.Q. Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 959. doi: 10.1007/s12613-022-2542-0
    [21]
    H.P. Han, R.Q. Wang, Y.K. Wu, et al., An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy, J. Alloys Compd., 811(2019), art. No. 152010. doi: 10.1016/j.jallcom.2019.152010
    [22]
    C.C. Liu, T. Xu, Q.Y. Shao, et al., Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys, J. Alloys Compd., 784(2019), p. 414. doi: 10.1016/j.jallcom.2019.01.095
    [23]
    X.Y. Wang, P.F. Ju, X.P. Lu, Y. Chen, and F.H. Wang, Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy, Ceram. Int., 48(2022), No. 3, p. 3615. doi: 10.1016/j.ceramint.2021.10.142
    [24]
    A. Ghanbari, A. Bordbar-Khiabani, F. Warchomicka, C. Sommitsch, B. Yarmand, and A. Zamanian, PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties, Surf. Interfaces, 36(2023), art. No. 102495. doi: 10.1016/j.surfin.2022.102495
    [25]
    N. Li, N. Ling, H.Y. Fan, L. Wang, and J.L. Zhang, Self-healing and superhydrophobic dual-function composite coating for active protection of magnesium alloys, Surf. Coat. Technol., 454(2023), art. No. 129146. doi: 10.1016/j.surfcoat.2022.129146
    [26]
    K. Qian, W.Z. Li, X.P. Lu, et al., Effect of phosphate-based sealing treatment on the corrosion performance of a PEO coated AZ91D Mg alloy, J. Magnesium Alloys, 8(2020), No. 4, p. 1328. doi: 10.1016/j.jma.2020.05.014
    [27]
    B. Mingo, R. Arrabal, M. Mohedano, et al., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy, Appl. Surf. Sci., 433(2018), p. 653. doi: 10.1016/j.apsusc.2017.10.083
    [28]
    M. Mohedano, C. Blawert, and M.L. Zheludkevich, Cerium-based sealing of PEO coated AM50 magnesium alloy, Surf. Coat. Technol., 269(2015), p. 145. doi: 10.1016/j.surfcoat.2015.01.003
    [29]
    N.V. Phuong, B.R. Fazal, and S. Moon, Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy, Surf. Coat. Technol., 309(2017), p. 86. doi: 10.1016/j.surfcoat.2016.11.055
    [30]
    Q.Q. Chen, X.P. Lu, M. Serdechnova, et al., Formation of self-healing PEO coatings on AM50 Mg by in situ incorporation of zeolite micro-container, Corros. Sci., 209(2022), art. No. 110785. doi: 10.1016/j.corsci.2022.110785
    [31]
    J.B. Meng, H.M. Li, X.J. Dong, et al., Corrosion protection of NiTi alloy via micro-arc oxidation doped with ZnO nanoparticles and polyacrylamide sol–gel sealing, J. Mater. Sci., 58(2023), p. 13816. doi: 10.1007/s10853-023-08883-9
    [32]
    S. Moon, Corrosion behavior of PEO-treated AZ31 Mg alloy in chloride solution, J. Solid State Electrochem., 18(2014), p. 341. doi: 10.1007/s10008-013-2247-4
    [33]
    L. Pezzato, R. Babbolin, P. Cerchier, et al., Sealing of PEO coated AZ91magnesium alloy using solutions containing neodymium, Corros. Sci., 173(2020), art. No. 108741. doi: 10.1016/j.corsci.2020.108741
    [34]
    M. Mohedano, P. Pérez, E. Matykina, B. Pillado, G. Garcés, and R. Arrabal, PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy, Surf. Coat. Technol., 383(2020), art. No. 125253. doi: 10.1016/j.surfcoat.2019.125253
    [35]
    M.A. Abd El-Ghaffar, N.A. Abdelwahab, A.M. Fekry, M.A. Sanad, M.W. Sabaa, and S.M.A. Soliman, Polyester-epoxy resin/conducting polymer/barium sulfate hybrid composite as a smart eco-friendly anti-corrosive powder coating, Prog. Org. Coat., 144(2020), art. No. 105664. doi: 10.1016/j.porgcoat.2020.105664
    [36]
    G. Senthilkumar, G.S. Kaliaraj, P. Vignesh, R.S. Vishwak, T.N. Joy, and J. Hemanandh, Hydroxyapatite–barium/strontium titanate composite coatings for better mechanical, corrosion and biological performance, Mater. Today Proc., 44(2021), p. 3618. doi: 10.1016/j.matpr.2020.09.758
    [37]
    F. Liu, D.Y. Shan, E.H. Han, and C.S. Liu, Barium phosphate conversion coating on die-cast AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 18(2008), No. S1, p. s344.
    [38]
    Y.G. Chen, B.L. Luan, G.L. Song, Q. Yang, D.M. Kingston, and F. Bensebaa, An investigation of new barium phosphate chemical conversion coating on AZ31 magnesium alloy, Surf. Coat. Technol., 210(2012), p. 156. doi: 10.1016/j.surfcoat.2012.09.009
    [39]
    P.X. Wu, Y.P. Dai, H. Long, et al., Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies, Chem. Eng. J., 191(2012), p. 288. doi: 10.1016/j.cej.2012.03.017
    [40]
    T.D. Pham, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, and T.S. Le, Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant, J. Mol. Liq., 287(2019), art. No. 110900. doi: 10.1016/j.molliq.2019.110900
    [41]
    C. Bai, M. Guo, Z. Liu, Z.J. Wu, and Q. Li, A novel method for removal of boron from aqueous solution using sodium dodecyl benzene sulfonate and D-mannitol as the collector, Desalination, 431(2018), p. 47. doi: 10.1016/j.desal.2017.12.028
    [42]
    L.Y. Xu, X.J. Fu, H.J. Su, H.L. Sun, R.C. Li, and Y. Wan, Corrosion and tribocorrosion protection of AZ31B Mg alloy by a hydrothermally treated PEO/chitosan composite coating, Prog. Org. Coat., 170(2022), art. No. 107002. doi: 10.1016/j.porgcoat.2022.107002
    [43]
    B. Vaghefinazari, S.V. Lamaka, C. Blawert, et al., Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEO-coated magnesium alloy, Corros. Sci., 203(2022), art. No. 110344. doi: 10.1016/j.corsci.2022.110344
    [44]
    Y. Chen, X.P. Lu, S.V. Lamaka, et al., Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors, Appl. Surf. Sci., 504(2020), art. No. 144462. doi: 10.1016/j.apsusc.2019.144462
    [45]
    D.B. Huang, J.Y. Hu, G.L. Song, and X.P. Guo, Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd–3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures, Electrochim. Acta, 56(2011), No. 27, p. 10166. doi: 10.1016/j.electacta.2011.09.002
    [46]
    Y.K. Zhu, M. Free, R. Woollam, and W. Durnie, A review of surfactants as corrosion inhibitors and associated modeling, Prog. Mater. Sci., 90(2017), p. 159. doi: 10.1016/j.pmatsci.2017.07.006
    [47]
    A. Frignani, V. Grassi, F. Zanotto, and F. Zucchi, Inhibition of AZ31 Mg alloy corrosion by anionic surfactants, Corros. Sci., 63(2012), p. 29. doi: 10.1016/j.corsci.2012.05.012
    [48]
    Y. Li, X.P. Lu, D. Mei, T. Zhang, and F.H. Wang, Passivation of corrosion product layer on AM50 Mg by corrosion inhibitor, J. Magnesium Alloys, 10(2022), No. 9, p. 2563. doi: 10.1016/j.jma.2021.11.020
    [49]
    C. Liu, X.P. Lu, Y. Li, Q.Q. Chen, T. Zhang, and F.H. Wang, Influence of post-treatment process on corrosion and wear properties of PEO coatings on AM50 Mg alloy, J. Alloys Compd., 870(2021), art. No. 159462. doi: 10.1016/j.jallcom.2021.159462
    [50]
    T. Bayram, S. Bucak, and D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. Process. Intensif., 158(2020), art. No. 108186. doi: 10.1016/j.cep.2020.108186
    [51]
    C.H. Xu, D.M. Wang, H.T. Wang, et al., Experimental investigation of coal dust wetting ability of anionic surfactants with different structures, Process. Saf. Environ. Prot., 121(2019), p. 69. doi: 10.1016/j.psep.2018.10.010
    [52]
    J.G. Speight, Lange's Handbook of Chemistry, McGraw-Hill Education, New York, 2005.
    [53]
    H.Y. Wang, Y.L. Song, X.G. Chen, G.D. Tong, and L.Y. Zhang, Microstructure and corrosion behavior of PEO-LDHs-SDS superhydrophobic composite film on magnesium alloy, Corros. Sci., 208(2022), art. No. 110699. doi: 10.1016/j.corsci.2022.110699
    [54]
    S.I. Omonmhenle and I.J. Shannon, Synthesis and characterisation of surfactant enhanced Mg–Al hydrotalcite-like compounds as potential 2-chlorophenol scavengers, Appl. Clay Sci., 127(2016), p. 88
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(413) PDF Downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return