Cite this article as: |
Yuying Huo, Zhengyan Wang, Yanlan Zhang, and Yongzhen Wang, High-entropy ferrite with tunable magnetic properties for excellent microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2883-y |
High-entropy design is attracting growing interest as it offers unique structures and unprecedented application potential for materials. In this article, a novel high-entropy ferrite (CoNi)x/2(CuZnAl)(1-x)/3Fe2O4 (x = 0.25, 0.34, 0.40, 0.50) with a single spinel phase of space group Fd-3m was successfully developed by the solid-state reaction method. By tuning the Co-Ni content, the magnetic properties of the material, especially the coercivity, changed regularly, and the microwave absorption properties were improved. In particular, the effective absorption bandwidth of the material increased from 4.8 GHz to 7.2 GHz, and the matched thickness decreased from 3.9 mm to 2.3 mm, while the minimum reflection loss remained below -20 dB. This study provides a practical method for modifying the properties of ferrites used to absorb electromagnetic waves.