Cite this article as: |
Haoyan Sun, Ajala Adewole Adetoro, Zhiqiang Wang, and Qingshan Zhu, Behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized reduction of titanomagnetite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2904-x |
Haoyan Sun E-mail: sunhaoyan@ipe.ac.cn
[1] |
World Steel Association, World Steel in Figures 2022, World Steel Association, 2022 [2022-10-31]. https://worldsteel.org/data/world-steel-in-figures-2022/
|
[2] |
X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the world, J. Clean. Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
|
[3] |
Z.Y. Fan and S.J. Friedmann, Low-carbon production of iron and steel: Technology options, economic assessment, and policy, Joule, 5(2021), No. 4, p. 829. doi: 10.1016/j.joule.2021.02.018
|
[4] |
Midrex Technologies, 2022 World Direct Reduction Statistics, World Steel Dynamics, 2023 [2023-12-11]. https://www.midrex.com/wp-content/uploads/MidrexSTATSBook2022.pdf
|
[5] |
A. Chatterjee, Sponge Iron Production by Direct Reduction of Iron Oxide, PHI Learning Private Limited, New Delhi, 2010.
|
[6] |
S.W. Prabowo, R.J. Longbottom, B.J. Monaghan, D. del Puerto, M.J. Ryan, and C.W. Bumby, Phase transformations during fluidized bed reduction of New Zealand titanomagnetite ironsand in hydrogen gas, Powder Technol., 398(2022), art. No. 117032. doi: 10.1016/j.powtec.2021.117032
|
[7] |
H.Y. Sun, A.A. Adetoro, F. Pan, Z. Wang, and Q.S. Zhu, Effects of high-temperature preoxidation on the titanomagnetite ore structure and reduction behaviors in fluidized bed, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1898. doi: 10.1007/s11663-017-0925-9
|
[8] |
A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li, Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed, Metall. Mater. Trans. B, 49(2018), No. 2, p. 846. doi: 10.1007/s11663-018-1193-z
|
[9] |
F. Pan, Z. Du, M.J. Zhang, and H.Y. Sun, Relationship between the phases, structure, MgO migration and the reduction performance of the pre-oxidized vanadium-titanium magnetite ore in a fluidized bed, ISIJ Int., 57(2017), No. 3, p. 413. doi: 10.2355/isijinternational.ISIJINT-2016-499
|
[10] |
H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, and Q.G. Xue, Reduction mechanism of titanomagnetite concentrate by hydrogen, Int. J. Miner. Process., 125(2013), p. 122. doi: 10.1016/j.minpro.2013.08.006
|
[11] |
H.Y. Sun, A.A. Adetoro, Z. Wang, F. Pan, and L. Li, Direct reduction behaviors of titanomagnetite ore by carbon monoxide in fluidized bed, ISIJ Int., 56(2016), No. 6, p. 936. doi: 10.2355/isijinternational.ISIJINT-2016-040
|
[12] |
M. Komatina and H.W. Gudenau, The sticking problem during direct reduction of fine iron ore in the fluidized bed, Metall. Mater. Eng., 10(2004), No. 4, p. 309.
|
[13] |
Z.C. Guo and X.Z. Gong, Sticking Mechanism and Suppression Technology of Fluidized Reduced Iron Ore Powder, Beijing Science Press, Beijing, 2015.
|
[14] |
L. Guo, J.T. Yu, J.K. Tang, Y.H. Lin, Z.C. Guo, and H.Q. Tang, Influence of coating MgO on sticking and functional mechanism during fluidized bed reduction of vanadium titano-magnetite, J. Iron Steel Res. Int., 22(2015), No. 6, p. 464. doi: 10.1016/S1006-706X(15)30028-5
|
[15] |
C. Lei, T. Zhang, J.B. Zhang, C.L. Fan, Q.S. Zhu, and H.Z. Li, Influence of content and microstructure of deposited carbon on fluidization behavior of iron powder at elevated temperatures, ISIJ Int., 54(2014), No. 3, p. 589. doi: 10.2355/isijinternational.54.589
|
[16] |
Q.S. Zhu and H.Z. Li, Study on magnetic fluidization of group C powders, Powder Technol., 86(1996), No. 2, p. 179. doi: 10.1016/0032-5910(96)83162-7
|
[17] |
J.M. Valverde and A. Castellanos, Effect of vibration on agglomerate particulate fluidization, AlChE. J., 52(2006), No. 5, p. 1705. doi: 10.1002/aic.10769
|
[18] |
N.S. Srinivasan, Reduction of iron oxides by carbon in a circulating fluidized bed reactor, Powder Technol., 124(2002), No. 1-2, p. 28. doi: 10.1016/S0032-5910(01)00484-3
|
[19] |
S.Y. He, H.Y. Sun, C.Q. Hu, J. Li, Q.S. Zhu, and H.Z. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol., 313(2017), p. 161. doi: 10.1016/j.powtec.2017.03.007
|
[20] |
H.Y. Sun, Q.S. Zhu, and H.Z. Li, The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed, Chin. J. Process Eng., 18(2018), No. 6, p. 1146.
|
[21] |
S.Y. Chen, X.J. Fu, M.S. Chu, Z.G. Liu, and J. Tang, Life cycle assessment of the comprehensive utilisation of vanadium titano-magnetite, J. Clean. Prod., 101(2015), p. 122. doi: 10.1016/j.jclepro.2015.03.076
|
[22] |
H.Y. Sun, J.S. Wang, X.J. Dong, and Q.G. Xue, A literature review of titanium slag metallurgical processes, Metal. Int., 17(2012), No. 7, p. 49.
|
[23] |
E. Park and O. Ostrovski, Effects of preoxidation of titania-ferrous ore on the ore structure and reduction behavior, ISIJ Int., 44(2004), No. 1, p. 74. doi: 10.2355/isijinternational.44.74
|
[24] |
A.A. Adetoro, Fundamental Research on Gas-Solid Direct Reduction of Titanomagnetite in a Fluidized Bed [Dissertation], University of Chinese Academy of Sciences, Beijing, 2019, p. 89.
|
[25] |
H. Zheng, O. Daghagheleh, T. Wolfinger, B. Taferner, J. Schenk, and R.S. Xu, Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1873. doi: 10.1007/s12613-022-2511-7
|
[26] |
E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int., 43(2003), No. 9, p. 1316. doi: 10.2355/isijinternational.43.1316
|
[27] |
X.F. She, H.Y. Sun, X.J. Dong, Q.G. Xue, and J.S. Wang, Reduction mechanism of titanomagnetite concentrate by carbon monoxide, J. Min. Metall. Sect. B, 49(2013), No. 3, p. 263. doi: 10.2298/JMMB121001020S
|
[28] |
T. Battle, U. Srivastava, J. Kopfle, R. Hunter, and J. McClelland, The direct reduction of iron, [in] S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Amsterdam, 2024, p. 89.
|
[29] |
L. Guo, Q.P. Bao, J.T. Gao, Q.S. Zhu, and Z.C. Guo, A review on prevention of sticking during fluidized bed reduction of fine iron ore, ISIJ Int., 60(2020), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2019-392
|
[30] |
X.Z. Gong, B. Zhang, Z. Wang, and Z.C. Guo, Insight of iron whisker sticking mechanism from iron atom diffusion and calculation of solid bridge radius, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2050. doi: 10.1007/s11663-014-0125-9
|
[31] |
B. Zhang, X.Z. Gong, Z. Wang, and Z.C. Guo, Relation between sticking and metallic iron precipitation on the surface of Fe2O3 particles reduced by CO in the fluidized bed, ISIJ Int., 51(2011), No. 9, p. 1403. doi: 10.2355/isijinternational.51.1403
|
[32] |
C. Wagner, Mechanism of the reduction of oxides and sulphides to metals, JOM, 4(1952), No. 2, p. 214. doi: 10.1007/BF03397678
|
[33] |
R. Nicolle and A. Rist, The mechanism of whisker growth in the reduction of wüstite, Metall. Trans. B, 10(1979), No. 3, p. 429. doi: 10.1007/BF02652516
|
[34] |
S.E. Moujahid and A. Rist, The nucleation of iron on dense wustite: A morphological study, Metall. Trans. B, 19(1988), No. 5, p. 787. doi: 10.1007/BF02650198
|