Cite this article as: |
Wenxin Zhao, Meng Zhang, Yukun Miao, Chang Wang, Anguo Cui, Liying Yuan, Zeqing Miao, Xiaoqing Wang, Zhibo Wang, Haoyu Pang, Alan Meng, Zhenjiang Li, and Ting Wang, Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2911-y |
Using SiC nanowires (SiCNWs) as the substrate, the reflux-annealing method and electro-deposition-carbonization technique were sequentially applied to integrate SiC nanowires with magnetic Fe3O4 nanoparticles and amorphous nitrogen-doped carbon (NC), resulting in the fabrication of SiCNWs@Fe3O4@NC nanocomposite. Comprehensive testing and characterization of this product have provided valuable insights into the impact of structural and composition changes on its electromagnetic wave absorption performances. The optimized SiCNWs@Fe3O4@NC nanocomposite, containing a 30 wt% filler content and a matching thickness of 2.03 mm, demonstrates exceptional performance with a minimum reflection loss (RLmin) of -53.69 dB at 11.04 GHz and an effective absorption bandwidth (EAB) of 4.4 GHz. This investigation thoroughly elucidates the synergistic effects of the enhanced nanocomposites on electromagnetic wave absorption, drawing on theories of multiple scattering, polarization relaxation, hysteresis loss and eddy current loss. Furthermore, a multi-component electromagnetic wave attenuation model has been established, providing valuable insight for designing novel absorbing materials and enhancing their absorption performances. This research demonstrates the significant potential of the SiCNWs@Fe3O4@NC nanocomposite as a highly efficient electromagnetic wave absorbing material, with potential applications in various fields, such as stealth technology and microwave absorption.