Cite this article as: |
Wenxi Zhang, Zhangzelong Zhuo, Dan Xu, Liang Wu, and Zhihui Xie, Superhydrophobic and corrosion-resistant siloxane-modified MgAl–LDHs coatings on magnesium alloy prepared under mild conditions, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2927-3 |
Zhihui Xie E-mail: zhxie@cwnu.edu.cn
[1] |
P. Pesode and S. Barve, Additive manufacturing of magnesium alloys and its biocompatibility, Bioprinting, 36(2023), art. No. e00318. doi: 10.1016/j.bprint.2023.e00318
|
[2] |
Y.B. Zhao, J. Bai, F. Xue, et al., Smart self-healing coatings on biomedical magnesium alloys: A review, Smart Mater. Manuf., 1(2023), art. No. 100022.
|
[3] |
M.F. Qi, L.Y. Wei, Y.Z. Xu, et al, Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746. doi: 10.1007/s12613-021-2327-x
|
[4] |
W. Zai, X.R. Zhang, Y.C. Su, H.C. Man, G.Y. Li, and J.S. Lian, Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy, Surf. Coat. Technol., 397(2020), art. No. 125919. doi: 10.1016/j.surfcoat.2020.125919
|
[5] |
G.Q. Duan, L.X. Yang, S.J. Liao, et al, Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197. doi: 10.1016/j.corsci.2018.02.051
|
[6] |
C.Y. Zhang, Y.Y. Chen, B.X. Yu, et al, Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg–10Gd–3Y–0.4Zr, Corros. Commun., 10(2023), p. 69. doi: 10.1016/j.corcom.2022.10.001
|
[7] |
X.M. Wang, G.J. Lu, L.Y. Cui, et al , In vitro degradation and biocompatibility of vitamin C loaded Ca–P coating on a magnesium alloy for bioimplant applications, Corros. Commun., 6(2022), p. 16. doi: 10.1016/j.corcom.2022.03.004
|
[8] |
D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, and K.K. Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1435. doi: 10.1007/s12613-022-2419-2
|
[9] |
G.L. Yang, Y.J. Ouyang, Z.H. Xie, Y. Liu, W.X. Dai, and L. Wu, Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection, Appl. Surf. Sci., 558(2021), art. No. 149840. doi: 10.1016/j.apsusc.2021.149840
|
[10] |
I. Fatima, O. Fayyaz, M.M. Yusuf, A. Al Ashraf, and R.A. Shakoor, Enhanced electrochemical and mechanical performance of BN reinforced Ni–P based nanocomposite coatings, Diam. Relat. Mater., 130(2022), art. No. 109454. doi: 10.1016/j.diamond.2022.109454
|
[11] |
M.H. Sliem, O. Fayyaz, R.A. Shakoor, et al, The influence of different preparation methods on the erosion behavior of NiP–ZrO2 nanocomposite coating, Tribol. Int., 178(2023), art. No. 108014. doi: 10.1016/j.triboint.2022.108014
|
[12] |
A. Fattah-alhosseini and R. Chaharmahali, Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review, J. Magnesium Alloys, 11(2023), No. 12, p. 4390. doi: 10.1016/j.jma.2023.10.005
|
[13] |
R.J. Liu, Y. Liu, Q.W. Yong, Z.H. Xie, L. Wu, and C.J. Zhong, Highly corrosion-resistant ZIF-8-integrated micro-arc oxidation coating on Mg alloy, Surf. Coat. Technol., 463(2023), art. No. 129505. doi: 10.1016/j.surfcoat.2023.129505
|
[14] |
X.Y. Yang, X.P. Lu, Y.X. Zhou, Y.F. Xie, J.J. Yang, and F.H. Wang, Formation of protective conversion coating on Mg surface by inorganic inhibitor, Corros. Sci., 215(2023), art. No. 111044. doi: 10.1016/j.corsci.2023.111044
|
[15] |
Q.Q. Chen, X.P. Lu, M. Serdechnova, et al, Formation of self-healing PEO coatings on AM50 Mg by in situ incorporation of zeolite micro-container, Corros. Sci., 209(2022), art. No. 110785. doi: 10.1016/j.corsci.2022.110785
|
[16] |
S.Y. Jin, X.C. Ma, R.Z. Wu, et al, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
|
[17] |
R.J. Liu, D. Xu, Y. Liu, L. Wu, Q.W. Yong, and Z.H. Xie, Enhanced corrosion protection for MAO coating on magnesium alloy by the synergism of LDH doping with deposition of 8HQ inhibitor film, Ceram. Int., 49(2023), No. 18, p. 30039. doi: 10.1016/j.ceramint.2023.06.261
|
[18] |
Y. Wang, Z.P. Gu, J. Liu, et al, An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol., 360(2019), p. 276. doi: 10.1016/j.surfcoat.2018.12.125
|
[19] |
J.Y. Yang, Y.B. Zhao, J.W. Dai, et al, Fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy, Surf. Coat. Technol., 452(2023), art. No. 129125. doi: 10.1016/j.surfcoat.2022.129125
|
[20] |
Y.J. Tarzanagh, D. Seifzadeh, and R. Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 536. doi: 10.1007/s12613-021-2251-0
|
[21] |
K. Abdi-Alghanab, D. Seifzadeh, Z. Rajabalizadeh, and A. Habibi-Yangjeh, High corrosion protection performance of the LDH/Ni–P composite coating on AM60B magnesium alloy, Surf. Coat. Technol., 397(2020), art. No. 125979. doi: 10.1016/j.surfcoat.2020.125979
|
[22] |
G.Z. Shen, L.Y. Zhang, Z.W. Gu, et al, Zinc aluminum-layered double hydroxide(LDH)–graphene oxide(GO) lubricating and corrosion-resistant composite coating on the surface of magnesium alloy, Surf. Coat. Technol., 437(2022), art. No. 128354. doi: 10.1016/j.surfcoat.2022.128354
|
[23] |
F. Peng, D.D. Zhang, X.Y. Liu, and Y. Zhang, Recent progress in superhydrophobic coating on Mg alloys: A general review, J. Magnesium Alloys, 9(2021), No. 5, p. 1471. doi: 10.1016/j.jma.2020.08.024
|
[24] |
Z.W. Song, Z.F. Huang, Z.H. Xie, et al, Preparation and corrosion resistance of robust superhydrophobic nickel-based coating, Surf. Technol, 52(2023), No.12, p. 379.
|
[25] |
C.C. Li, T.T. Liang, R.N. Ma, et al, Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel, J. Alloys Compd., 825(2020), art. No. 153921. doi: 10.1016/j.jallcom.2020.153921
|
[26] |
S.J. Song, H. Yan, M. Cai, et al, Superhydrophobic composite coating for reliable corrosion protection of Mg alloy, Mater. Des., 215(2022), art. No. 110433. doi: 10.1016/j.matdes.2022.110433
|
[27] |
S.J. Zhang, D.L. Cao, L.K. Xu, J.K. Tang, R.Q. Meng, and H.D. Li, Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition, Colloids Surf. A, 625(2021), art. No. 126914. doi: 10.1016/j.colsurfa.2021.126914
|
[28] |
R. Fang, R.J. Liu, Z.H. Xie, L. Wu, Y.J. Ouyang, and M.Q. Li, Corrosion-resistant and superhydrophobic nickel–phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy, Surf. Coat. Technol., 432(2022), art. No. 128054. doi: 10.1016/j.surfcoat.2021.128054
|
[29] |
Y.Q. Li, Y.J. Ouyang, R. Fang, et al, A nickel-underlayer/LDH-midlayer/siloxane-toplayer composite coating for inhibiting galvanic corrosion between Ni layer and Mg alloy, Chem. Eng. J., 430(2022), art. No. 132776. doi: 10.1016/j.cej.2021.132776
|
[30] |
X.G. Wang, L.C. Yan, K.W. Gao, P.C. Li, and J.J. Hao, Enhancing the corrosion resistance of ZnAl–LDHs films on AZ91D magnesium alloys by designing surface roughness, Coatings, 13(2023), No. 4, art. No. 724. doi: 10.3390/coatings13040724
|
[31] |
L.F. Hou, Y.L. Li, J.L. Sun, S.H. Zhang, H. Wei, and Y.H. Wei, Enhancement corrosion resistance of MgAl layered double hydroxides films by anion-exchange mechanism on magnesium alloys, Appl. Surf. Sci., 487(2019), p. 101. doi: 10.1016/j.apsusc.2019.05.048
|
[32] |
T. Shulha, M. Serdechnova, S.V. Lamaka, et al, Corrosion inhibitors intercalated into layered double hydroxides prepared in situ on AZ91 magnesium alloys: Structure and protection ability, ACS Appl. Mater. Interfaces, 15(2023), No. 4, p. 6098. doi: 10.1021/acsami.2c18675
|
[33] |
R.R. Li, W.Q. Liu, H.B. Liu, et al, Dual active sites of Ni and FeNi3 constructed from layered double hydroxides for one-pot hydrogenation of furfural to tetrahydrofurfuryl alcohol, Ind. Eng. Chem. Res., 62(2023), No. 50, p. 21631. doi: 10.1021/acs.iecr.3c03481
|
[34] |
Z.W. Jiang, J.N. Wu, X.R. Liu, et al, Facile synthesis of MgAl layered double hydroxides by a co-precipitation method for efficient nitrate removal from water: Kinetics and mechanisms, New J. Chem., 45(2021), No. 32, p. 14580. doi: 10.1039/D1NJ02035H
|
[35] |
C.D. Ding, Y. Tai, D. Wang, L.H. Tan, and J.J. Fu, Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection, Chem. Eng. J., 357(2019), p. 518. doi: 10.1016/j.cej.2018.09.133
|
[36] |
K.Y. Cao, Z.X. Yu, L.J. Zhu, et al, Fabrication of superhydrophobic layered double hydroxide composites to enhance the corrosion-resistant performances of epoxy coatings on Mg alloy, Surf. Coat. Technol., 407(2021), art. No. 126763. doi: 10.1016/j.surfcoat.2020.126763
|
[37] |
Q.S. Yao, F. Zhang, L. Song, et al, Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg–Al-layered double hydroxide on AZ31 magnesium alloy, J. Alloys Compd., 764(2018), p. 913. doi: 10.1016/j.jallcom.2018.06.152
|
[38] |
R.H. Temperton, J.N. O’Shea, and D.J. Scurr, On the suitability of high vacuum electrospray deposition for the fabrication of molecular electronic devices, Chem. Phys. Lett., 682(2017), p. 15. doi: 10.1016/j.cplett.2017.05.068
|
[39] |
T.Y. Kim, D.S. Park, Y. Choi, J. Baek, J.R. Park, and J. Yi, Preparation and characterization of mesoporous Zr–WO x/SiO2 catalysts for the esterification of 1-butanol with acetic acid, J. Mater. Chem., 22(2012), No. 19, p. 10021. doi: 10.1039/c2jm30904a
|
[40] |
X. Li, J.X. Yang, J.J. Wang, X.J. Chang, J.L. Xu, and Z.H. Wu, A stable super-amphiphilic surface created from superhydrophobic silica/epoxy coating by low-temperature plasma-treatment, Surf. Eng., 37(2021), No. 10, p. 1282. doi: 10.1080/02670844.2021.1888214
|
[41] |
L.J. Yang, X.Q. Cheng, Y.L. Ma, et al, Changing of SEI film and electrochemical properties about MCMB electrodes during long-term charge/discharge cycles, J. Electrochem. Soc., 160(2013), No. 11, p. A2093. doi: 10.1149/2.064311jes
|
[42] |
Y. Zhang, X. He, J. Ouyang, and H.M. Yang, Palladium nanoparticles deposited on silanized halloysite nanotubes: Synthesis, characterization and enhanced catalytic property, Sci. Rep., 3(2013), art. No. 2948. doi: 10.1038/srep02948
|
[43] |
Y.J. Ouyang, Z.F. Huang, R. Fang, L. Wu, Q.W. Yong, and Z.H. Xie, Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance, Surf. Coat. Technol., 450(2022), art. No. 128995. doi: 10.1016/j.surfcoat.2022.128995
|
[44] |
H.D. Liu, D.Y. Liu, P.H. Li, Y.J. Zeng, and H.Y. Jin, Direct observation of the wetting state of Cassie and Wenzel, Mater. Lett., 340(2023), art. No. 134182. doi: 10.1016/j.matlet.2023.134182
|
[45] |
G. Whyman, E. Bormashenko, and T. Stein, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phys. Lett., 450(2008), No. 4-6, p. 355. doi: 10.1016/j.cplett.2007.11.033
|
[46] |
X. Zhang, W.Z. Zhu, G.J. He, P.Y. Zhang, Z.J. Zhang, and I.P. Parkin, Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state, J. Mater. Chem. A, 4(2016), No. 37, p. 14180. doi: 10.1039/C6TA06493K
|
[47] |
U. Cengiz and C. Elif Cansoy, Applicability of Cassie–Baxter equation for superhydrophobic fluoropolymer–silica composite films, Appl. Surf. Sci., 335(2015), p. 99. doi: 10.1016/j.apsusc.2015.02.033
|
[48] |
T.F. Xiang, M. Zhang, H.R. Sadig, et al, Slippery liquid-infused porous surface for corrosion protection with self-healing property, Chem. Eng. J., 345(2018), p. 147. doi: 10.1016/j.cej.2018.03.137
|
[49] |
Y. Shu, F. Peng, Z.H. Xie, et al, Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy, J. Magnesium Alloys, (2023
|
[50] |
X. Wang, C. Jing, Y.X. Chen, et al, Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg–Al layered double hydroxide coating on AZ31 magnesium alloy, J. Magnesium Alloys, 8(2020), No. 1, p. 291. doi: 10.1016/j.jma.2019.11.011
|
[51] |
N. Li, N. Ling, H.Y. Fan, L. Wang, and J.L. Zhang, Self-healing and superhydrophobic dual-function composite coating for active protection of magnesium alloys, Surf. Coat. Technol., 454(2023), art. No. 129146. doi: 10.1016/j.surfcoat.2022.129146
|
[52] |
Z.F. Huang, Q.W. Yong, and Z.H. Xie, Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance, Corros. Commun., 10(2023), p. 38. doi: 10.1016/j.corcom.2022.09.002
|
[53] |
Q. Li, S.Q. Xu, J.Y. Hu, S.Y. Zhang, X.K. Zhong, and X.K. Yang, The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D, Electrochim. Acta, 55(2010), No. 3, p. 887. doi: 10.1016/j.electacta.2009.06.048
|
[54] |
T. Hu, Y.J. Ouyang, Z.H. Xie, and L. Wu, One-pot scalable in situ growth of highly corrosion-resistant MgAl–LDH/MBT composite coating on magnesium alloy under mild conditions, J. Mater. Sci. Technol., 92(2021), p. 225. doi: 10.1016/j.jmst.2021.03.021
|