Zhonghua Lu, Jun Shen, Xin Zhang, Lingcong Chao, Liang Chen, Ding Zhang, Tao Wei,  and Shoudong Xu, From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2930-8
Cite this article as:
Zhonghua Lu, Jun Shen, Xin Zhang, Lingcong Chao, Liang Chen, Ding Zhang, Tao Wei,  and Shoudong Xu, From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2930-8
Research Article

From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Jun Shen    E-mail: xushoudong@tyut.edu.cn

    Tao Wei    E-mail: shenjun@tyut.edu.cn

    Shoudong Xu    E-mail: wt863@126.com

  • Received: 18 February 2024Revised: 26 April 2024Accepted: 9 May 2024Available online: 11 May 2024
  • Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications. Coal tar residues (CTR), as a type of carbon-rich solid waste with high value-added utilization, are crucially important for the development of a more sustainable world. In this study, we employed a straightforward direct carbonization method within the temperature range of 700–1000°C to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries (PIBs). The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons (CTRCs) were systematically explored by structural and morphological characterization, alongside electrochemical performances assessment. Based on the co-regulation between the turbine layers, crystal structure, pore structure, functional groups, and electrical conductivity of CTR-derived carbon carbonized at 900°C (CTRC-900H), the electrode material with high reversible capacity of 265.6 mAh g−1 at 50 mA·g−1, a desirable cycling stability with 93.8% capacity retention even after 100 cycles, and the remarkable rate performance for PIBs were obtained. Furthermore, cyclic voltammetry (CV) at different scan rates and galvanostatic intermittent titration technique (GITT) have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs. Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes, particularly under high current densities, with the potassium storage mechanism characterized by an “adsorption–weak intercalation” mechanism. This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes, while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
  • loading
  • Supplementary Information-s12613-024-2930-8.docx
    Supplementary Information-s12613-024-2930-8.docx
  • [1]
    A. Soni, P.K. Das, A.W. Hashmi, M. Yusuf, H. Kamyab, and S. Chelliapan, Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review, Sustain. Chem. Pharm., 27(2022), art. No. 100706. doi: 10.1016/j.scp.2022.100706
    [2]
    X.X. Peng, Y.S. Jiang, Z.H. Chen, et al., Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review, Environ. Chem. Lett., 21(2023), No. 2, p. 765. doi: 10.1007/s10311-022-01551-5
    [3]
    J.C. Altamirano, S.S. Yin, L. Belova, G. Poma, and A. Covaci, Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments, Environ. Res., 245(2024), art. No. 118006. doi: 10.1016/j.envres.2023.118006
    [4]
    B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, and H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review, Fuel, 315(2022), art. No. 123218. doi: 10.1016/j.fuel.2022.123218
    [5]
    Z.H. Lu, S. Guo, J. Shen, et al., Evolution of structure and pyrolysis characteristics of coal tar residue after extraction, J. Energy Inst., 111(2023), art. No. 101421. doi: 10.1016/j.joei.2023.101421
    [6]
    X.L. Wang, J. Shen, Y.X. Niu, Q.T. Sheng, G. Liu, and Y.G. Wang, Solvent extracting coal gasification tar residue and the extracts characterization, J. Cleaner Prod., 133(2016), p. 965. doi: 10.1016/j.jclepro.2016.06.060
    [7]
    F.Y. Gao, C.C. Zhou, Z.H. Wang, W.W. Zhu, X. Wang, and G.J. Liu, Solid-oil separation of coal tar residue to reduce polycyclic aromatic hydrocarbons via microwave-assisted extraction, J. Environ. Manage., 337(2023), art. No. 117679. doi: 10.1016/j.jenvman.2023.117679
    [8]
    Y.X. Niu, X.L. Wang, J. Shen, et al., Separation of coal gasification tar residue by solvent extracting, Sep. Purif. Technol., 188(2017), p. 98. doi: 10.1016/j.seppur.2017.07.002
    [9]
    X.L. Wang, J. Shen, Y.X. Niu, Y.G. Wang, G. Liu, and Q.T. Sheng, Removal of phenol by powdered activated carbon prepared from coal gasification tar residue, Environ. Technol., 39(2018), No. 6, p. 694. doi: 10.1080/09593330.2017.1310304
    [10]
    L. Gao, F.Q. Dong, Q.W. Dai, G.Q. Zhong, U. Halik, and D.J. Lee, Coal tar residues based activated carbon: Preparation and characterization, J. Taiwan Inst. Chem. Eng., 63(2016), p. 166. doi: 10.1016/j.jtice.2016.02.029
    [11]
    Y.H. Wang, P. He, X.M. Zhao, W. Lei, and F.Q. Dong, Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors, J. Solid State Electrochem., 18(2014), No. 3, p. 665. doi: 10.1007/s10008-013-2303-0
    [12]
    S. Li, J.L. Qin, T.J. Gao, et al., Fabrication of Fe3C nanoparticles embedded in N-doped carbon nanotubes/porous carbon 3D materials derived from distilled grains for high performance of potassium ion battery, J. Alloys Compd., 912(2022), art. No. 165130. doi: 10.1016/j.jallcom.2022.165130
    [13]
    J. Xu, S.M. Dou, W. Zhou, et al., Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors, Nano Energy, 95(2022), art. No. 107015. doi: 10.1016/j.nanoen.2022.107015
    [14]
    X.X. Zhang, F. Wu, X.W. Lv, et al., Achieving sustainable and stable potassium-ion batteries by leaf-bioinspired nanofluidic flow, Adv. Mater., 34(2022), No. 39, art. No. 2204370. doi: 10.1002/adma.202204370
    [15]
    J.R. Wu, T. Yang, Y. Song, Z.H. Ma, X.D. Tian, and Z.J. Liu, Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review, Carbon, 221(2024), art. No. 118902. doi: 10.1016/j.carbon.2024.118902
    [16]
    D.Y. Wang, Q. Wang, M.X. Tan, et al., Biomass CQDs derivate carbon as high-performance anode for K-ion battery, J. Alloys Compd., 922(2022), art. No. 166260. doi: 10.1016/j.jallcom.2022.166260
    [17]
    J.M. Cao, K.Y. Zhang, J.L. Yang, Z.Y. Gu, and X.L. Wu, Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives, Chin. Chem. Lett., 35(2024), No. 4, art. No. 109304. doi: 10.1016/j.cclet.2023.109304
    [18]
    X. Li, Y. Zhou, B. Deng, J. Li, and Z. Xiao, Research progress of biomass carbon materials as anode materials for potassium-ion batteries, Front. Chem., 11(2023), art. No. 1162909. doi: 10.3389/fchem.2023.1162909
    [19]
    Y. Ma, W.H. Liu, W.H. Liu, et al., Coconut-solid-waste-derived hard-carbon anode materials for fast potassium ion storage, Coatings, 14(2024), No. 2, art. No. 208. doi: 10.3390/coatings14020208
    [20]
    J.G. Zheng, F.Y. Xiao, H.J. Jin, et al., Facile fabrication of MoS2 nanocrystals confined in waste leather derived N, P co-doped carbon fiber for long-lifespan of sodium/potassium ion batteries, J. Phys. Chem. Solids, 172(2023), art. No. 111080. doi: 10.1016/j.jpcs.2022.111080
    [21]
    Q. Zhao, Q.T. Zheng, S.H. Li, et al., Nitrogen/oxygen/sulfur tri-doped hard carbon nanospheres derived from waste tires with high sodium and potassium anodic performances, Inorg. Chem. Front., 10(2023), No. 9, p. 2574. doi: 10.1039/D2QI02378D
    [22]
    X. He, L. Zhong, X. Qiu, et al., Sustainable polyvinyl chloride-derived soft carbon anodes for potassium-ion storage: Electrochemical behaviors and mechanism, ChemSusChem, 16(2023), No. 19, art. No. e202300646. doi: 10.1002/cssc.202300646
    [23]
    Z.H. Kang, K.X. Sun, C.F. Sun, and Q. Liu, A plastics-derived organic anode material for practical and sustainable potassium-ion batteries, Int. J. Electrochem. Sci., 18(2023), No. 9, art. No. 100222. doi: 10.1016/j.ijoes.2023.100222
    [24]
    X.Y. Liu, H.C. Tao, C.Y. Tang, and X.L. Yang, Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries, Chem. Eng. Sci., 248(2022), art. No. 117200. doi: 10.1016/j.ces.2021.117200
    [25]
    H. Wang, F. Sun, J.H. Dong, et al., Mechanochemistry transforming high-surface-area coal-based activated carbon into densified carbon with optimized multi-scale structures for enhanced sodium/potassium ion storage, Electrochim. Acta, 475(2024), art. No. 143579. doi: 10.1016/j.electacta.2023.143579
    [26]
    W. Wei, F. Wang, J. Yang, J. Zou, J. Li, and K. Shi, A superior potassium-ion anode material from pitch-based activated carbon fibers with hierarchical pore structure prepared by metal catalytic activation, ACS Appl. Mater. Interfaces, 13(2021), No. 5, p. 6557. doi: 10.1021/acsami.0c22184
    [27]
    Y. Jiang, N. Xiao, X.D. Song, et al., Coal tar pitch derived sp2 configuration-dominated vacancy-rich carbon with expand interlayer spacing for low-voltage, durable, and fast potassium storage, Adv. Funct. Mater., 34(2024), No. 26, art. No. 2316207. doi: 10.1002/adfm.202316207
    [28]
    Y. Jiang, J.M. Jiang, C. Geng, et al., Rational regulation of defect-rich hierarchical porous carbon nanosheets as sustainable anode materials for potassium-ion storage, J. Energy Storage, 75(2024), art. No. 109544. doi: 10.1016/j.est.2023.109544
    [29]
    X. Li, Q. Chu, D.Y. Zhao, et al., Improved electrochemical performance of soft carbon derived from coal liquefaction residue coated with expanded graphite for lithium/potassium batteries, Chem. Eng. Sci., 281(2023), art. No. 119108. doi: 10.1016/j.ces.2023.119108
    [30]
    H. Ullah, Q. Abbas, M.U. Ali, et al., Synergistic effects of low-/medium-vacuum carbonization on physico-chemical properties and stability characteristics of biochars, Chem. Eng. J., 373(2019), p. 44. doi: 10.1016/j.cej.2019.05.025
    [31]
    Y.G. Wang, X.Y. Wei, S.K. Wang, et al., Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis, Fuel Process. Technol., 144(2016), p. 248. doi: 10.1016/j.fuproc.2015.12.034
    [32]
    Q.X. Yao, X.X. Kong, X.M. Dai, et al., 1H NMR and 13C NMR characterization of n-heptane extraction of low-temperature coal tar reacted with formaldehyde, Energy Sources Part A, 42(2020), No. 12, p. 1490. doi: 10.1080/15567036.2019.1604863
    [33]
    J.C. Yan, Z.P. Lei, Z.K. Li, et al., Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy, Fuel, 268(2020), art. No. 117038. doi: 10.1016/j.fuel.2020.117038
    [34]
    Z.H. Lu, S. Guo, J. Shen, et al., Effect of solvent extraction on the composition of coal tar residues and their pyrolysis characteristics, Energy Sources Part A, 44(2022), No. 4, p. 9204. doi: 10.1080/15567036.2022.2129881
    [35]
    G.L. Zhang, T.T. Guan, M. Cheng, et al., Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors, J. Power Sources, 448(2020), art. No. 227446. doi: 10.1016/j.jpowsour.2019.227446
    [36]
    N. Sun, R. Zhao, M.Y. Xu, S.H. Zhang, R.A. Soomro, and B. Xu, Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance, J. Power Sources, 564(2023), art. No. 232879. doi: 10.1016/j.jpowsour.2023.232879
    [37]
    Q. Sun, D.P. Li, J. Cheng, et al., Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage, Carbon, 155(2019), p. 601. doi: 10.1016/j.carbon.2019.08.059
    [38]
    Z.R. Wu, J. Zou, S. Shabanian, K. Golovin, and J. Liu, The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries, Chem. Eng. J., 427(2022), art. No. 130972. doi: 10.1016/j.cej.2021.130972
    [39]
    C.G. Wang and F.G. Zeng, Molecular structure characterization of CS2–NMP extract and residue for Malan bituminous coal via solid-state 13C NMR, FTIR, XPS, XRD, and CAMD techniques, Energy Fuels, 34(2020), No. 10, p. 12142. doi: 10.1021/acs.energyfuels.0c01877
    [40]
    M.H. Song, Q. Song, T. Zhang, et al., Growing curly graphene layer boosts hard carbon with superior sodium-ion storage, Nano Res., 16(2023), No. 7, p. 9299. doi: 10.1007/s12274-023-5539-8
    [41]
    S. Alvin, D. Yoon, C. Chandra, et al., Revealing sodium ion storage mechanism in hard carbon, Carbon, 145(2019), p. 67. doi: 10.1016/j.carbon.2018.12.112
    [42]
    J. Kister, N. Pieri, R. Alvarez, M.A. Díez, and J.J. Pis, Effects of preheating and oxidation on two bituminous coals assessed by synchronous UV fluorescence and FTIR spectroscopy, Energy Fuels, 10(1996), No. 4, p. 948. doi: 10.1021/ef950159a
    [43]
    R. Torres-Sciancalepore, A. Fernandez, D. Asensio, et al., Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds, Energy Convers. Manage., 252(2022), art. No. 115076. doi: 10.1016/j.enconman.2021.115076
    [44]
    D. Zhao, H.Q. Zhao, J.Q. Ye, et al., Oxygen functionalization boosted sodium adsorption-intercalation in coal based needle coke, Electrochim. Acta, 329(2020), art. No. 135127. doi: 10.1016/j.electacta.2019.135127
    [45]
    R.K. Mishra, K. Mohanty, and X.H. Wang, Pyrolysis kinetic behavior and Py-GC–MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals, Fuel, 260(2020), art. No. 116338. doi: 10.1016/j.fuel.2019.116338
    [46]
    L.N. Qin, S.D. Xu, Z.H. Lu, et al., Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries, Diam. Relat. Mater., 136(2023), art. No. 110065. doi: 10.1016/j.diamond.2023.110065
    [47]
    J.H. Choi, G.D. Park, D.S. Jung, and Y.C. Kang, Pitch-derived carbon coated SnO2–CoO yolk–shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries, Chem. Eng. J., 369(2019), p. 726. doi: 10.1016/j.cej.2019.03.123
    [48]
    Q.D. Liu, F. Han, J.F. Zhou, et al., Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20838. doi: 10.1021/acsami.0c00679
    [49]
    D.P. Qiu and Y.L. Hou, Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism, Green Energy Environ., 8(2023), No. 1, p. 115. doi: 10.1016/j.gee.2022.05.007
    [50]
    Y.F. Zhang, W.R. Wei, C.L. Zhu, et al., Interconnected honeycomb-like carbon with rich nitrogen/sulfur doping for stable potassium ion storage, Electrochim. Acta, 424(2022), art. No. 140596. doi: 10.1016/j.electacta.2022.140596
    [51]
    J.L. Liu, T.T. Yin, B.B. Tian, et al., Unraveling the potassium storage mechanism in graphite foam, Adv. Energy Mater., 9(2019), No. 22, art. No. 1900579. doi: 10.1002/aenm.201900579
    [52]
    Y. Liu, Y.X. Lu, Y.S. Xu, et al., Pitch-derived soft carbon as stable anode material for potassium ion batteries, Adv. Mater., 32(2020), No. 17, art. No. 2000505. doi: 10.1002/adma.202000505
    [53]
    Y.X. Du, H.G. Fan, L.C. Bai, et al., Molten salt-assisted construction of hollow carbon spheres with outer-order and inner-disorder heterostructure for ultra-stable potassium ion storage, ACS Appl. Mater. Interfaces, 15(2023), No. 3, p. 4081. doi: 10.1021/acsami.2c19784
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(118) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return