Xiaoxiao Wang and Qingsong Huang, Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2931-7
Cite this article as:
Xiaoxiao Wang and Qingsong Huang, Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2931-7
Research Article

Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property

+ Author Affiliations
  • Corresponding author:

    Qingsong Huang    E-mail: qshuang@scu.edu.cn

  • Received: 28 December 2023Revised: 3 May 2024Accepted: 9 May 2024Available online: 11 May 2024
  • Densely distributed coherent nanoparticles (DCN) in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously. All the routes to this end can be generally classified into the liquid–solid route and the solid–solid route. However, the formation of DCN structures in steel requires long processes and complex steps. So far, obtaining steel with coherent particle enhancement in a short time remains a bottleneck, and some necessary steps remain unavoidable. Here, we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field. Ti–Y–Mn–O particles had an average size of around (3.53 ± 1.21) nm and can be obtained in just around 180 s. These small nanoparticles were coherent with the matrix, implying no accumulated dislocations between the particles and the steel matrix. Our findings have a potential application for improving material machining capacity, creep resistance, and radiation resistance.
  • loading
  • Supplementary Information-s12613-024-2931-7.docx
  • [1]
    K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, 324(2009), No. 5925, p. 349. doi: 10.1126/science.1159610
    [2]
    K. Kumar, H. Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51(2003), p. 5743. doi: 10.1016/j.actamat.2003.08.032
    [3]
    M.K. Miller, C.L. Fu, M. Krcmar, D.T. Hoelzer, and C.T. Liu, Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels, Front. Mater. Sci. China, 3(2009), No. 1, p. 9. doi: 10.1007/s11706-009-0001-8
    [4]
    J.H. Schneibel, C.T. Liu, M.K. Miller, et al., Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Mater., 61(2009), No. 8, p. 793. doi: 10.1016/j.scriptamat.2009.06.034
    [5]
    S.H. Jiang, H. Wang, Y. Wu, et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature, 544(2017), No. 7651, p. 460. doi: 10.1038/nature22032
    [6]
    Y.J. Liang, L.J. Wang, Y.R. Wen, et al., High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9(2018), No. 1, art. No. 4063. doi: 10.1038/s41467-018-06600-8
    [7]
    L.L. Han, Z.Y. Rao, I.R. Souza Filho, et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates, Adv. Mater., 33(2021), No. 37, art. No. 2102139. doi: 10.1002/adma.202102139
    [8]
    H. Tang, X.H. Chen, M.W. Chen, L.F. Zuo, B. Hou, and Z.D. Wang, Microstructure and mechanical property of in situ nano-particle strengthened ferritic steel by novel internal oxidation, Mater. Sci. Eng. A, 609(2014), p. 293. doi: 10.1016/j.msea.2014.05.020
    [9]
    X.H. Chen, L.L. Qiu, H. Tang, et al., Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel, J. Mater. Process. Technol., 222(2015), p. 224. doi: 10.1016/j.jmatprotec.2015.03.013
    [10]
    Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
    [11]
    Z. Dong, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor, Nat. Commun., 12(2021), No. 1, art. No. 5052. doi: 10.1038/s41467-021-25283-2
    [12]
    A.J. London, S. Santra, S. Amirthapandian, et al., Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys, Acta Mater., 97(2015), p. 223. doi: 10.1016/j.actamat.2015.06.032
    [13]
    J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 707. doi: 10.1007/s12613-022-2567-4
    [14]
    J.L. Du, S.H. Jiang, P.P. Cao, et al., Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices, Nat. Mater., 22(2023), No. 4, p. 442. doi: 10.1038/s41563-022-01260-y
    [15]
    Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu, Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles, Acta Mater., 84(2015), p. 283. doi: 10.1016/j.actamat.2014.10.065
    [16]
    E.A. Marquis and D.N. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Mater., 49(2001), No. 11, p. 1909. doi: 10.1016/S1359-6454(01)00116-1
    [17]
    P. Dou, A. Kimura, T. Okuda, et al., Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel, Acta Mater., 59(2011), No. 3, p. 992. doi: 10.1016/j.actamat.2010.10.026
    [18]
    L.Y. Zhang, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. A, 695(2017), p. 66. doi: 10.1016/j.msea.2017.04.020
    [19]
    Q.X. Sun, Q.F. Fang, Y. Zhou, et al., Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling, J. Nucl. Mater., 439(2013), No. 1-3, p. 103. doi: 10.1016/j.jnucmat.2013.03.087
    [20]
    C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater., 59(2011), No. 18, p. 7029. doi: 10.1016/j.actamat.2011.07.057
    [21]
    J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
    [22]
    J.J. Fischer, Dispersion Strengthened Ferritic Alloy for Use in Liquid-metal Fast Breeder Reactors, United States Patent, Appl. 4075010, 1978.
    [23]
    Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro, Ultra grain refining and decomposition of oxide during super-heavy deformation in oxide dispersion ferritic stainless steel powder, ISIJ Int., 39(1999), No. 2, p. 176. doi: 10.2355/isijinternational.39.176
    [24]
    L. Dai, Y.C. Liu, and Z.Z. Dong, Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing, Powder Technol., 217(2012), p. 281. doi: 10.1016/j.powtec.2011.10.039
    [25]
    S. Kim, S. Ohtsuka, T. Kaito, et al., Formation of nano-size oxide particles and δ-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater., 417(2011), No. 1-3, p. 209. doi: 10.1016/j.jnucmat.2011.01.063
    [26]
    Q. Zhao, L.M. Yu, Y.C. Liu, et al., Microstructure and tensile properties of a 14Cr ODS ferritic steel, Mater. Sci. Eng. A, 680(2017), p. 347. doi: 10.1016/j.msea.2016.10.118
    [27]
    P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing, J. Mater. Sci., 45(2010), No. 17, p. 4858. doi: 10.1007/s10853-010-4264-3
    [28]
    N. Al-Aqeeli, M.A. Hussein, and C. Suryanarayana, Phase evolution during high energy ball milling of immiscible Nb–Zr alloys, Adv. Powder Technol., 26(2015), No. 2, p. 385. doi: 10.1016/j.apt.2014.11.008
    [29]
    D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger, Influence of particle dispersions on the high-temperature strength of ferritic alloys, J. Nucl. Mater., 367-370(2007), p. 166. doi: 10.1016/j.jnucmat.2007.03.151
    [30]
    M. Laurent-Brocq, F. Legendre, M.H. Mathon, et al., Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels, Acta Mater., 60(2012), No. 20, p. 7150. doi: 10.1016/j.actamat.2012.09.024
    [31]
    Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, and H.J. Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1156. doi: 10.1007/s12613-018-1667-7
    [32]
    E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663. doi: 10.1016/S1359-6462(03)00396-8
    [33]
    A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater., 10(2011), No. 12, p. 922. doi: 10.1038/nmat3150
    [34]
    M.K. Miller, K.F. Russell, and D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater., 351(2006), No. 1-3, p. 261. doi: 10.1016/j.jnucmat.2006.02.004
    [35]
    H.L. Peng, I. Baker, L. Hu, and L.J. Li, Superior strength-ductility synergy in a novel tailored nanoparticles-strengthened medium-entropy alloy, Scripta Mater., 207(2022), art. No. 114278. doi: 10.1016/j.scriptamat.2021.114278
    [36]
    G.X. Qiu, X.L. Wei, C. Bai, D.J. Miao, L. Cao, and X.M. Li, Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting, Nucl. Eng. Technol., 54(2022), No. 7, p. 2376. doi: 10.1016/j.net.2022.01.030
    [37]
    S. Chenna Krishna, N.K. Karthick, A.K. Jha, B. Pant, and R.M. Cherian, Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel, J. Mater. Eng. Perform., 27(2018), No. 5, p. 2388. doi: 10.1007/s11665-018-3317-7
    [38]
    Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
    [39]
    S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
    [40]
    H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
    [41]
    H. Chen, Y.M. Yang, C.L. Hu, et al., Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2397. doi: 10.1007/s12613-023-2706-6
    [42]
    T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steels, Acta Mater., 56(2008), No. 7, p. 1407. doi: 10.1016/j.actamat.2007.11.038
    [43]
    M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel, Acta Mater., 60(2012), No. 4, p. 1827. doi: 10.1016/j.actamat.2011.11.057
    [44]
    J. Chen, L. Lu, and K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scripta Mater., 54(2006), No. 11, p. 1913. doi: 10.1016/j.scriptamat.2006.02.022
    [45]
    L. Hsiung, M. Fluss, S. Tumey, et al., HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance, J. Nucl. Mater., 409(2011), No. 2, p. 72. doi: 10.1016/j.jnucmat.2010.09.014
    [46]
    D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich, HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754, Acta Mater., 49(2001), No. 18, p. 3647. doi: 10.1016/S1359-6454(01)00285-3
    [47]
    G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
    [48]
    J. Ribis and Y. de Carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials, Acta Mater., 60(2012), No. 1, p. 238. doi: 10.1016/j.actamat.2011.09.042
    [49]
    C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20(1949), No. 10, p. 950. doi: 10.1063/1.1698258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(224) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return