Yuntian Lou, Weiwei Chang, Yu Zhang, Shengyu He, Xudong Chen, Hongchang Qian,  and Dawei Zhang, Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2932-6
Cite this article as:
Yuntian Lou, Weiwei Chang, Yu Zhang, Shengyu He, Xudong Chen, Hongchang Qian,  and Dawei Zhang, Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2932-6
Research Article

Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa

+ Author Affiliations
  • Corresponding author:

    Dawei Zhang    E-mail: dzhang@ustb.edu.cn

  • Received: 13 January 2024Revised: 8 May 2024Accepted: 9 May 2024Available online: 11 May 2024
  • To enhance the microbiologically influenced corrosion (MIC) resistance of FeCoNiCrMn high entropy alloy (HEAs), a series of FexCu(1−x)CoNiCrMn (x = 1, 0.75, 0.5, and 0.25) HEAs were prepared. Microstructural characteristics, corrosion behavior (morphology observation and electrochemical properties), and antimicrobial performance of FexCu(1−x)CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa. The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties. Results revealed that all FexCu(1−x)CoNiCrMn (x = 1, 0.75, 0.5, and 0.25) HEAs exhibited an FCC (face centered cubic) phase, with significant grain refinement observed in Fe0.75Cu0.25CoNiCrMn HEA. Electrochemical tests indicated that Fe0.75Cu0.25CoNiCrMn HEA demonstrated lower corrosion current density (icorr) and pitting potential (Epit) compared to other FexCu(1−x)CoNiCrMn HEAs in P. aeruginosa-inoculated medium, exhibiting superior resistance to MIC. Anti-microbial tests showed that after 14 d of immersion, Fe0.75Cu0.25CoNiCrMn achieved an antibacterial rate of 89.5%, effectively inhibiting the adhesion and biofilm formation of P. aeruginosa, thereby achieving resistance to MIC.
  • loading
  • [1]
    N. Kip and J.A. van Veen, The dual role of microbes in corrosion, ISME J., 9(2015), No. 3, p. 542. doi: 10.1038/ismej.2014.169
    [2]
    D.K. Xu, T.Y. Gu, and D.R. Lovley, Microbially mediated metal corrosion, Nat. Rev. Microbiol., 21(2023), No. 11, p. 705. doi: 10.1038/s41579-023-00920-3
    [3]
    B.J. Little and J.S. Lee, Microbiologically influenced corrosion: An update, Int. Mater. Rev., 59(2014), No. 7, p. 384. doi: 10.1179/1743280414Y.0000000035
    [4]
    Y.T. Lou, W.W. Chang, T.Y. Cui, et al., Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens, NPJ Mater. Degrad., 5(2021), art. No. 59. doi: 10.1038/s41529-021-00206-0
    [5]
    M. Mehanna, I. Rouvre, M.L. Delia, D. Feron, A. Bergel, and R. Basseguy, Discerning different and opposite effects of hydrogenase on the corrosion of mild steel in the presence of phosphate species, Bioelectrochemistry, 111(2016), p. 31. doi: 10.1016/j.bioelechem.2016.04.005
    [6]
    B.J. Little, J. Hinks, and D.J. Blackwood, Microbially influenced corrosion: Towards an interdisciplinary perspective on mechanisms, Int. Biodeterior. Biodegrad., 154(2020), art. No. 105062. doi: 10.1016/j.ibiod.2020.105062
    [7]
    H.C. Qian, W.W. Chang, W.L. Liu, et al., Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa, Bioelectrochemistry, 143(2022), art. No. 107953. doi: 10.1016/j.bioelechem.2021.107953
    [8]
    H.C. Qian, W.W. Chang, T.Y. Cui, et al., Multi-mode scanning electrochemical microscopic study of microbiologically influenced corrosion mechanism of 304 stainless steel by thermoacidophilic Archaea, Corros. Sci., 191(2021), art. No. 109751. doi: 10.1016/j.corsci.2021.109751
    [9]
    G.P. Krantz, K. Lucas, E.L. Wunderlich, et al., Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm, Biofouling, 35(2019), No. 6, p. 669. doi: 10.1080/08927014.2019.1646731
    [10]
    M. Yazdi, F. Khan, R. Abbassi, N. Quddus, and H. Castaneda-Lopez, A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines, Reliab. Eng. Syst. Saf., 223(2022), art. No. 108474. doi: 10.1016/j.ress.2022.108474
    [11]
    H.C. Qian, J.T. Zhang, T.Y. Cui, et al., Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense, Bioelectrochemistry, 140(2021), art. No. 107746. doi: 10.1016/j.bioelechem.2021.107746
    [12]
    S. Yu, Y.T. Lou, D.W. Zhang, et al., Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution, Bioelectrochemistry, 133(2020), art. No. 107477. doi: 10.1016/j.bioelechem.2020.107477
    [13]
    T.Y. Cui, H.C. Qian, Y.T. Lou, et al., Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM, Corros. Sci., 206(2022), art. No. 110543. doi: 10.1016/j.corsci.2022.110543
    [14]
    M.J. Li, L. Nan, C.Y. Liang, Z.Q. Sun, L. Yang, and K. Yang, Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro, J. Mater. Sci. Technol, 62(2021), p. 139. doi: 10.1016/j.jmst.2020.05.030
    [15]
    W.P. Iverson, Research on the mechanisms of anaerobic corrosion, Int. Biodeterior. Biodegrad., 47(2001), No. 2, p. 63. doi: 10.1016/S0964-8305(00)00111-6
    [16]
    Y.Z. Liang, C.Y. Li, P. Wang, and D. Zhang, Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion, Colloids Surf. A, 631(2021), art. No. 127696. doi: 10.1016/j.colsurfa.2021.127696
    [17]
    W.W. Chang, Y.Y. Li, Z.Y. Li, et al., The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1, Bioelectrochemistry, 147(2022), art. No. 108173. doi: 10.1016/j.bioelechem.2022.108173
    [18]
    Y.T. Hu, L.Y. Huang, Y.T. Lou, W.W. Chang, H.C. Qian, and D.W. Zhang, Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer, Corros. Sci., 207(2022), art. No. 110608. doi: 10.1016/j.corsci.2022.110608
    [19]
    S.H. Lu, W.W. Dou, T.Y. Gu, et al., Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae, Corros. Sci., 217(2023), art. No. 111125. doi: 10.1016/j.corsci.2023.111125
    [20]
    J. Anguita, G. Pizarro, and I.T. Vargas, Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer, Bioelectrochemistry, 145(2022), art. No. 108058. doi: 10.1016/j.bioelechem.2022.108058
    [21]
    T.Y. Gu, D. Wang, Y. Lekbach, and D.K. Xu, Extracellular electron transfer in microbial biocorrosion, Curr. Opin. Electrochem., 29(2021), art. No. 100763. doi: 10.1016/j.coelec.2021.100763
    [22]
    Z.Y. Li, W.W. Chang, T.Y. Cui, et al., Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel, Commun. Mater., 2(2021), art. No. 67. doi: 10.1038/s43246-021-00173-8
    [23]
    Y. Fu, J. Li, H. Luo, C.W. Du, and X.G. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, J. Mater. Sci. Technol., 80(2021), p. 217. doi: 10.1016/j.jmst.2020.11.044
    [24]
    Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
    [25]
    X.H. Wang, Y.L. Deng, D.D. Zhu, D. Dong, and T.F. Ma, GPa level pressure-induced phase transitions and enhanced corrosion resistance of AlCrMoSiTi high-entropy alloys, J. Mater. Res. Technol., 26(2023), p. 6389. doi: 10.1016/j.jmrt.2023.08.274
    [26]
    P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution, Corros. Sci., 172(2020), art. No. 108740. doi: 10.1016/j.corsci.2020.108740
    [27]
    J. Liu, S.L. Duan, X.K. Yue, and N.S. Qu, Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 750. doi: 10.1007/s12613-023-2762-y
    [28]
    Z.B. Chen, K. Huang, B.W. Zhang, et al., Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1922. doi: 10.1007/s12613-023-2624-7
    [29]
    X. Xiao, M.Z. Lin, C.H. Xu, J.W. Zhang, and W.B. Liao, An efficient approach to develop and screen out high-entropy alloy composition with high performance for biomedical application, Surf. Coat. Technol., 478(2024), art. No. 130504. doi: 10.1016/j.surfcoat.2024.130504
    [30]
    C.D. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, and D.W. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys, J. Mater. Sci. Technol., 46(2020), p. 64. doi: 10.1016/j.jmst.2019.10.020
    [31]
    M.D. Zhang, L.J. Zhang, P.K. Liaw, G. Li, and R.P. Liu, Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNb x high-entropy alloys, J. Mater. Res., 33(2018), No. 19, p. 3276. doi: 10.1557/jmr.2018.103
    [32]
    Q.C. Zhao, Z.M. Pan, X.F. Wang, H. Luo, Y. Liu, and X.G. Li, Corrosion and passive behavior of Al xCrFeNi3− x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment, Corros. Sci., 208(2022), art. No. 110666. doi: 10.1016/j.corsci.2022.110666
    [33]
    Y.T. Lou, C.D. Dai, W.W. Chang, et al., Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa, Corros. Sci., 165(2020), art. No. 108390. doi: 10.1016/j.corsci.2019.108390
    [34]
    W.W. Chang, Y.Y. Li, H.B. Zheng, et al., Microbiologically influenced corrosion behavior of Fe40(CoCrMnNi)60 and Fe60(CoCrMnNi)40 medium entropy alloys in the presence of pseudomonas aeruginosa, Acta Metall. Sin., 36(2023), No. 3, p. 379. doi: 10.1007/s40195-022-01488-2
    [35]
    J.K. Yang, Y. Zhang, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiologically influenced corrosion of FeCoNiCrMn high-entropy alloys by Pseudomonas aeruginosa biofilm, Front. Microbiol., 13(2022), art. No. 1009310. doi: 10.3389/fmicb.2022.1009310
    [36]
    P. Mahmoudi, M.R. Akbarpour, H.B. Lakeh, F.J. Jing, M.R. Hadidi, and B. Akhavan, Antibacterial Ti–Cu implants: A critical review on mechanisms of action, Mater. Today Bio, 17(2022), art. No. 100447. doi: 10.1016/j.mtbio.2022.100447
    [37]
    S. Kumar, D.N. Roy, and V. Dey, A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling, Colloid Interface Sci. Commun., 43(2021), art. No. 100464. doi: 10.1016/j.colcom.2021.100464
    [38]
    B.R. Zheng, D. Wang, M.H. Yang, et al., Enhancement of microbiologically influenced corrosion resistance of copper-containing nickel-free high nitrogen stainless steel against marine corrosive Pseudomonas aeruginosa, Colloid Interface Sci. Commun, 53(2023), art. No. 100706. doi: 10.1016/j.colcom.2023.100706
    [39]
    J. Ju, R. Zan, Z. Shen, et al., Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti–6Al–4V–xCu alloy by laser powder bed fusion for superior biomedical implant applications, Chem. Eng. J., 471(2023), art. No. 144656. doi: 10.1016/j.cej.2023.144656
    [40]
    J.Q. Li, D.Y. Zhang, X.B. Chen, et al., Laser directed energy deposited, ultrafine-grained functional titanium–copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies, J. Mater. Sci. Technol., 166(2023), p. 21. doi: 10.1016/j.jmst.2023.05.020
    [41]
    M.S. Khan, C.G. Yang, H.B. Pan, K. Yang, and Y. Zhao, The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS, Colloids Surf. B, 211(2022), art. No. 112309. doi: 10.1016/j.colsurfb.2021.112309
    [42]
    S.Y. Zhang, H.B. Zheng, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiological deterioration of epoxy coating on carbon steel by Pseudomonas aeruginosa, Coatings, 13(2023), No. 3, art. No. 606. doi: 10.3390/coatings13030606
    [43]
    D. Liu, H.Y. Yang, J.H. Li, et al., Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy, J. Mater. Sci. Technol., 79(2021), p. 101. doi: 10.1016/j.jmst.2020.11.042
    [44]
    H.W. Liu and Y.F. Cheng, Corrosion of X52 pipeline steel in a simulated soil solution with coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria, Corros. Sci., 173(2020), art. No. 108753. doi: 10.1016/j.corsci.2020.108753
    [45]
    R. Jia, D.Q. Yang, D.K. Xu, and T.Y. Gu, Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm, Front. Microbiol., 8(2017), art. No. 2335. doi: 10.3389/fmicb.2017.02335
    [46]
    L.Y. Huang, W.W. Chang, D.W. Zhang, et al., Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm, Corros. Sci., 199(2022), art. No. 110159. doi: 10.1016/j.corsci.2022.110159
    [47]
    D. Guo, J. Chen, X. Chen, et al., Pitting corrosion behavior of friction-surfaced 17-4PH stainless steel coatings with and without subsequent heat treatment, Corros. Sci., 193(2021), art. No. 109887. doi: 10.1016/j.corsci.2021.109887
    [48]
    Y.T. Lou, L. Lin, D.K. Xu, et al., Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater, Int. Biodeterior. Biodegrad., 110(2016), p. 199. doi: 10.1016/j.ibiod.2016.03.026
    [49]
    B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
    [50]
    C.C. Du, L. Hu, Q.H. Pan, K.M. Chen, P.J. Zhou, and G.J. Wang, Effect of Cu on the strengthening and embrittling of an FeCoNiCr–xCu HEA, Mater. Sci. Eng. A, 832(2022), art. No. 142413. doi: 10.1016/j.msea.2021.142413
    [51]
    X.P. Hao, Y. Bai, C.H. Ren, et al., Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens, Corros. Sci., 196(2022), art. No. 110067. doi: 10.1016/j.corsci.2021.110067
    [52]
    S.P. Sah, Evolution of corrosion resistance of 310S stainless steel in carbonates melt at 650°C, Corros. Sci., 226(2024), art. No. 111663. doi: 10.1016/j.corsci.2023.111663
    [53]
    L. Karygianni, Z. Ren, H. Koo, and T. Thurnheer, Biofilm matrixome: Extracellular components in structured microbial communities, Trends Microbiol., 28(2020), No. 8, p. 668. doi: 10.1016/j.tim.2020.03.016
    [54]
    B.B. Yang, C.Y. Shi, J.W. Teng, et al., Corrosion behaviours of low Mo Ni–(Co)–Cr–Mo alloys with various contents of Co in HF acid solution, J. Alloys Compd., 791(2019), p. 215. doi: 10.1016/j.jallcom.2019.03.325
    [55]
    E.Z. Zhou, D.X. Qiao, Y. Yang, et al., A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms, J. Mater. Sci. Technol., 46(2020), p. 201. doi: 10.1016/j.jmst.2020.01.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(152) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return