Yongxuan Shang, Mingyu Fan, Shuyong Jiang, and Zhongwu Zhang, Effects of carbon content on the microstructure and tensile properties of a low-density steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2937-1
Cite this article as:
Yongxuan Shang, Mingyu Fan, Shuyong Jiang, and Zhongwu Zhang, Effects of carbon content on the microstructure and tensile properties of a low-density steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2937-1
Research Article

Effects of carbon content on the microstructure and tensile properties of a low-density steel

+ Author Affiliations
  • Corresponding author:

    Zhongwu Zhang    E-mail: zwzhang@hrbeu.edu.cn

  • Received: 4 February 2024Revised: 25 April 2024Accepted: 17 May 2024Available online: 18 May 2024
  • Carbon can change the phase components of low-density steels and influence the mechanical properties. In this study, a new method to control the carbon content and avoid the formation of δ-ferrite by decarburization treatment was proposed. The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined. Crussard–Jaoul (C–J) analysis was employed to examine the work hardening characteristics during the tensile test. During decarburization by heat treatments, the carbon content within the austenite phase decreased, while Mn and Al were almost unchanged; this made the steel with full austenite transform into the austenite and ferrite dual phase. Meanwhile, (Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same. In addition, the formation of other carbides restrained. Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution. For the steel with the single austinite, the deformation mode of austenite was the dislocation planar glide, resulting in the formation of microbands. For the dual-phase steel, the deformation occurred by the dislocation planar glide of austenite first, with the increase in strain, the cross slip of ferrite took place, forming dislocation cells in ferrite. At the late stage of deformation, the work hardening of austinite increased rapidly, while that of ferrite increased slightly.
  • loading
  • [1]
    S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
    [2]
    I. Gutierrez-Urrutia and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater., 68(2013), No. 6, p. 343. doi: 10.1016/j.scriptamat.2012.08.038
    [3]
    R. Kuziak, R. Kawalla, and S. Waengler, Advanced high strength steels for automotive industry, Arch. Civ. Mech. Eng., 8(2008), No. 2, p. 103. doi: 10.1016/S1644-9665(12)60197-6
    [4]
    Y.L. Gao, M. Zhang, R. Wang, X.X. Zhang, Z.L. Tan, and X.Y. Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2189. doi: 10.1007/s12613-024-2857-0
    [5]
    B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285 doi: 10.1007/s12613-023-2751-1
    [6]
    S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
    [7]
    Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
    [8]
    Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, and F.R. Cao, Microstructural evolution and strain hardening behavior during plastic deformation of Fe–12Mn–8Al–0.8C steel, Mater. Sci. Eng. A, 584(2013), p. 150. doi: 10.1016/j.msea.2013.07.023
    [9]
    S.W. Hwang, J.H. Ji, E.G. Lee, and K.T. Park, Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5196. doi: 10.1016/j.msea.2011.03.045
    [10]
    C. Zhao, R.B. Song, L.F. Zhang, F.Q. Yang, and T. Kang, Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel, Mater. Des., 91(2016), p. 348. doi: 10.1016/j.matdes.2015.11.115
    [11]
    J.D. Yoo, S.W. Hwang, and K.T. Park, Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1520. doi: 10.1007/s11661-009-9862-9
    [12]
    L.F. Zhang, R.B. Song, C. Zhao, F.Q. Yang, Y. Xu, and S.G. Peng, Evolution of the microstructure and mechanical properties of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 643(2015), p. 183. doi: 10.1016/j.msea.2015.07.043
    [13]
    C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang, and T.F. Liu, Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy, J. Alloys Compd., 586(2014), p. 616. doi: 10.1016/j.jallcom.2013.10.153
    [14]
    A. Etienne, V. Massardier-Jourdan, S. Cazottes, et al., Ferrite effects in Fe–Mn–Al–C triplex steels, Metall. Mater. Trans. A, 45(2014), No. 1, p. 324. doi: 10.1007/s11661-013-1990-6
    [15]
    K. Choi, C.H. Seo, H. Lee, et al., Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel, Scripta Mater., 63(2010), No. 10, p. 1028. doi: 10.1016/j.scriptamat.2010.07.036
    [16]
    G. Frommeyer and U. Brüx, Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels, Steel Res. Int., 77(2006), No. 9-10, p. 627. doi: 10.1002/srin.200606440
    [17]
    J.D. Yoo and K.T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 417. doi: 10.1016/j.msea.2008.05.042
    [18]
    E. Welsch, D. Ponge, S.M. Hafez Haghighat, et al., Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater., 116(2016), p. 188. doi: 10.1016/j.actamat.2016.06.037
    [19]
    H. Ding, D. Han, J. Zhang, Z.H. Cai, Z.Q. Wu, and M.H. Cai, Tensile deformation behavior analysis of low density Fe–18Mn–10Al–xC steels, Mater. Sci. Eng. A, 652(2016), p. 69. doi: 10.1016/j.msea.2015.11.071
    [20]
    L.F. Zhang, R.B. Song, C. Zhao, and F.Q. Yang, Work hardening behavior involving the substructural evolution of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 640(2015), p. 225. doi: 10.1016/j.msea.2015.05.108
    [21]
    D. Han, H. Ding, D.G. Liu, B. Rolfe, and H. Beladi, Influence of C content and annealing temperature on the microstructures and tensile properties of Fe–13Mn–8Al–(0.7, 1.2)C steels, Mater. Sci. Eng. A, 785(2020), art. No. 139286. doi: 10.1016/j.msea.2020.139286
    [22]
    O.A. Zambrano, A general perspective of Fe–Mn–Al–C steels, J. Mater. Sci., 53(2018), No. 20, p. 14003. doi: 10.1007/s10853-018-2551-6
    [23]
    K. Kadoi, S. Ueno, and H. Inoue, Effects of ferrite content and concentrations of carbon and silicon on weld solidification cracking susceptibility of stainless steels, J. Mater. Res. Technol., 25(2023), p. 1314.
    [24]
    H.L. Yi, Review on δ-transformation-induced plasticity (TRIP) steels with low density: The concept and current progress, JOM, 66(2014), No. 9, p. 1759. doi: 10.1007/s11837-014-1089-6
    [25]
    T.H. Man, W.J. Wang, Y.H. Zhou, et al., Effect of cooling rate on the precipitation behavior of κ-carbide in Fe–32Mn–11Al–0.9C low density steel, Mater. Lett., 314(2022), art. No. 131778. doi: 10.1016/j.matlet.2022.131778
    [26]
    L.B. Liu, C.M. Li, Y. Yang, Z.P. Luo, C.J. Song, and Q.J. Zhai, A simple method to produce austenite-based low-density Fe–20Mn–9Al–0.75C steel by a near-rapid solidification process, Mater. Sci. Eng. A, 679(2017), p. 282. doi: 10.1016/j.msea.2016.10.044
    [27]
    D.W. Kim, J. Yoo, S.S. Sohn, and S. Lee, Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel, Mater. Sci. Eng. A, 802(2021), art. No. 140619. doi: 10.1016/j.msea.2020.140619
    [28]
    J.L. Zhang, C.H. Hu, Y.H. Zhang, J.H. Li, C.J. Song, and Q.J. Zhai, Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe–20Mn–9Al–1.2C–xCr steels, Mater. Des., 186(2020), art. No. 108307. doi: 10.1016/j.matdes.2019.108307
    [29]
    A. Rosenauer, D. Brandl, G. Ressel, et al., Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel, Mater. Sci. Eng. A, 856(2022), art. No. 144024. doi: 10.1016/j.msea.2022.144024
    [30]
    J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim, Improvement of strength–ductility balance of B2-strengthened lightweight steel, Acta Mater., 191(2020), p. 1. doi: 10.1016/j.actamat.2020.03.022
    [31]
    K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, Phase equilibria in Fe–Mn–Al–C alloys, ISIJ Int., 30(1990), No. 8, p. 680. doi: 10.2355/isijinternational.30.680
    [32]
    Y. Xiong, Z.W. Luan, X.Q. Zha, et al., Achieving superior strength and ductility combination in Fe–28Mn–8Al–1C low density steel by orthogonal rolling, J. Mater. Res. Technol., 25(2023), p. 6123. doi: 10.1016/j.jmrt.2023.07.059
    [33]
    Z. Li, Y.C. Wang, X.W. Cheng, Z.Y. Li, J.K. Du, and S.K. Li, The effect of Ti–Mo–Nb on the microstructures and tensile properties of a Fe–Mn–Al–C austenitic steel, Mater. Sci. Eng. A, 780(2020), art. No. 139220. doi: 10.1016/j.msea.2020.139220
    [34]
    H. Kim, D.W. Suh, and N.J. Kim, Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties, Sci. Technol. Adv. Mater., 14(2013), No. 1, art. No. 014205. doi: 10.1088/1468-6996/14/1/014205
    [35]
    S.S. Babu, E.D. Specht, S.A. David, et al. , In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metall. Mater. Trans. A, 36(2005), No. 12, p. 3281. doi: 10.1007/s11661-005-0002-x
    [36]
    Y.R. Wen, L.N. Liang, F.K. Chiang, et al., Influences of manganese content and heat treatment on mechanical properties of precipitation-strengthened steels, Mater. Sci. Eng. A, 837(2022), art. No. 142724. doi: 10.1016/j.msea.2022.142724
    [37]
    W.S. Choi, S. Sandlöbes, N.V. Malyar, et al., Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe–Mn–C micro-pillars, Acta Mater., 132(2017), p. 162. doi: 10.1016/j.actamat.2017.04.043
    [38]
    G. Park, C.H. Nam, A. Zargaran, and N.J. Kim, Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels, Scripta Mater., 165(2019), p. 68. doi: 10.1016/j.scriptamat.2019.02.013
    [39]
    S.S. Sohn, H. Song, B.C. Suh, et al., Novel ultra-high-strength (ferrite+austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Mater., 96(2015), p. 301. doi: 10.1016/j.actamat.2015.06.024
    [40]
    Z. Li, Y.C. Wang, X.W. Cheng, J.X. Liang, and S.K. Li, Compressive behavior of a Fe–Mn–Al–C lightweight steel at different strain rates, Mater. Sci. Eng. A, 772(2020), art. No. 138700. doi: 10.1016/j.msea.2019.138700
    [41]
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483(2008), p. 184.
    [42]
    U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
    [43]
    L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, and X.J. Jin, Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng. A, 838(2022), art. No. 142829. doi: 10.1016/j.msea.2022.142829
    [44]
    B. Mishra, R. Sarkar, V. Singh, et al., Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase, Materialia, 20(2021), art. No. 101198. doi: 10.1016/j.mtla.2021.101198
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(486) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return